### **MinEx CRC Limited**

26 Dick Perry Avenue, Kensington, WA, 6151 PO Box 1130, Bentley, WA, 6102, Australia admin@minexcrc.com.au



MinEx CRC provides financial support to the value of \$1K to promote Honours and Masters by Coursework projects that are aligned with the mission of MinEx CRC and to encourage young researchers toward a career in mineral exploration research. Projects are not restricted to MinEx CRC Participants and Affiliates.

Please note that the content of this thesis has not been subjected to peerreview and subsequent corrections.



# Constraining the hidden Delamerian margin: A geochemical and geochronological analysis of an arc undercover

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Matthew Robert Barnett November 2024



### TITLE

Constraining the hidden Delamerian margin: A geochemical and geochronological analysis of an arc undercover.

### **RUNNING TITLE**

Constraining the hidden Delamerian margin

### **ABSTRACT**

The Cambro-Ordovician Delamerian Orogen of southeastern Australia preserves the final stages of Gondwana amalgamation and the initiation of a west-dipping subduction system that formed the palaeo-Pacific Ocean. The Loch Lilly-Kars Belt (LLKB), located south of Broken Hill, is the central portion of the Delamerian Orogen, though is buried under Cenozoic cover of the Murray Darling Basin. As a result of this, the rocks of the LLKB are understudied and poorly constrained despite potential for mineral endowment.

To better understand the formation and evolution of the LLKB, samples were collected from six diamond drill holes drilled in 2023 by Geoscience Australia and MinExCRC, as part of the National Drilling Initiative. Geochronological constraints on low-grade metamorphism, alteration, and magmatism were obtained using in-situ LA-ICP-MS Rb—Sr and U—Pb age mapping of altered igneous suites and cross-cutting calcite veins. A depositional window of sedimentary samples within the section was also deduced using Rb—Sr and U—Pb spot analyses of deep-water shales and carbonate beds, respectively. Geochemical analysis of igneous samples was undertaken in the form of solution ICP-MS, obtaining major and trace element data along with TIMS analysis of Sm—Nd isotopes to further understand the tectonic setting of the Delamerian and the geochemical nature of the intrusive samples within these sections.

Results show that the LLKB was an active margin of the Delamerian Orogen and contains age and geochemical equivalent intrusions to those in the Stavely Arc and Koonenberry Belt in adjacent sections of the arc. Furthermore, our study also records evidence for a second episode of igneous activity ca. 500–470 Ma of back-arc affinity with an eastward migration. Data indicates episodic hydrothermal activity in the region continued until at least 250 Ma after the conclusion of the Delamerian Orogeny, likely associated with tectonic fluctuations at the subduction margin. This periodic tectonism may be linked to the wider evolution of the collisional margin as the subduction zone rolled back eastwards.

### **KEYWORDS**

Delamerian Orogen; subduction; geochemistry; elemental mapping; alteration; volcanic arc; Tasmanides; greenfields; orogeny.

# **TABLE OF CONTENTS**

| Title                                                             | i  |
|-------------------------------------------------------------------|----|
| Running title                                                     | i  |
| Abstract                                                          | i  |
| Keywords                                                          | i  |
| List of Figures and Tables                                        | 5  |
| Introduction                                                      | 8  |
| Geological Background                                             | 11 |
| The Tasmanides                                                    | 11 |
| The Delamerian Orogen                                             | 11 |
| The Loch Lilly-Kars Belt                                          | 13 |
| Delamerian mineralisation and its link to subduction              | 14 |
| Methods                                                           | 15 |
| Sample collection and preparation                                 | 15 |
| Petrography                                                       | 16 |
| Scanning Electron Microscopy                                      | 17 |
| Solution ICP-MS                                                   | 17 |
| Thermal Ionisation Mass Spectrometry (TIMS)                       | 17 |
| LA-ICP-MS                                                         | 18 |
| In-situ Rubidium-Strontium and trace element analysis             | 18 |
| Laser spot analysis                                               | 18 |
| Raster mapping analysis                                           | 19 |
| In-situ Uranium-Lead and trace element carbonate mapping analysis | 21 |
| Observations and Results                                          | 23 |
| General sample overview                                           | 23 |
| Sedimentary Rocks                                                 | 23 |
| Igneous Samples                                                   | 24 |
| Petrography                                                       | 25 |
| SEM                                                               | 28 |
| MLA/BSE Maps                                                      | 28 |
| Sample LK12-173                                                   | 28 |
| Sample MP02-556                                                   | 29 |
| Sample MP03-548                                                   | 30 |
| Geochemistry                                                      | 31 |

| Solution ICP-MS                                                                    | 31 |
|------------------------------------------------------------------------------------|----|
| LK12 olivine basalt dykes                                                          | 32 |
| MP2 and MP3 granites/granodiorites                                                 | 33 |
| Sm-Nd Tims analysis of Igneous samples                                             | 35 |
| Geochronology                                                                      |    |
| Rb-Sr ages of spot analysed shales and intrusions                                  | 37 |
| LA-ICP-MS Rb-Sr ages of raster analysed alteration textures                        | 40 |
| Sample MP03-493                                                                    | 40 |
| Sample LK-172                                                                      | 43 |
| Sample MP02-583                                                                    | 45 |
| LA-ICP-MS U-Pb ages of raster analysed carbonate beds and veins                    | 48 |
| Discussion                                                                         | 48 |
| The rift, drift and end of a passive margin on the Tasman Line                     | 48 |
| Back-arc sedimentation in the LLKB                                                 | 49 |
| An arc in the Loch Lilly-Kars Belt                                                 | 51 |
| From arc to back-arc                                                               | 55 |
| The mafic olivine basalt dykes of LLKB                                             | 57 |
| Post active margin events in the Loch Lilly-Kars Belt                              | 59 |
| Conclusions                                                                        | 61 |
| Acknowledgments                                                                    | 62 |
| References                                                                         | 63 |
| Appendix 1: Table of samples and equivalent hole and depth                         | 69 |
| Appendix 2: Sample photos and description                                          | 70 |
| Appendix 3: Detailed thin section descriptions of igneous samples from LLKB        | 81 |
| Appendix 3A: LK12A                                                                 | 81 |
| Appendix 3B: LK12B                                                                 | 81 |
| Appendix 3C: MP2A                                                                  | 82 |
| Appendix 3D: MP2B                                                                  | 83 |
| Appendix 3E: MP3A                                                                  | 84 |
| Appendix 3F:MP3B                                                                   | 85 |
| Appendix 4: Elemental dwell times for LA-ICP-MS Rb-Sr spot and elemental manalysis |    |
| Appendix 5: Elemental dwell times for LA-ICP-MS U-Pb elemental mapping and         |    |
|                                                                                    |    |
| Appendix 6: Elemental composition maps from Iolite4 for sample MP03-493            |    |
| Appendix 7: Elemental composition maps from Iolite4 for sample LK-172              | 89 |

| Appendix 8: Elemental composition maps from Iolite4 for sample MP02-583                | 90  |
|----------------------------------------------------------------------------------------|-----|
| Appendix 9: Sample MP02556                                                             | 91  |
| Appendix 10: Sample LK12-173                                                           | 94  |
| Appendix 11: MP03-546                                                                  | 97  |
| Appendix 12: Sample MP02-579                                                           | 100 |
| Appendix 13: Parameters for data acquisition of Rb–Sr shale & illite LA-ICP-Manalysis. | -   |
| Appendix 14: Solution ICP-MS geochemical data                                          | 104 |
| Appendix 15: Raw Data from Rb-Sr LA-ICP-MS spot analysis of shales and in              |     |
| Appendix 16: Solution ICP-MS method                                                    | 122 |
| Appendix 17: Method for whole-rock digestion used in TIMS preparation                  | 122 |

# LIST OF FIGURES AND TABLES

| Figure 1: Schematic diagram showing subduction zone types and corresponding                        |
|----------------------------------------------------------------------------------------------------|
| structure and deformation records in the upper plate (modified after Cawood et al.,                |
| 2009; Straub et al., 2020; Chapman et al., 2021). After An et al., (2024). MASH—                   |
| melting, assimilation, storage, homogenization.                                                    |
| Figure 2: Location map of the Terra Australis Orogen and it's position relative to                 |
| Australia's position within the Gondwanan continent in the Cambrian Period. Cratonic               |
| Australia, Antarctica, Africa and India are labelled. The hypothesised location of the             |
|                                                                                                    |
| Stavely Arc and Loch Lilly-Kars Belt (LLKB) are labelled. After Johnson et al. (2016).             |
|                                                                                                    |
| Figure 3: Total magnetic intensity map of south-eastern Australia obtained through                 |
| SARIG and The Geological Survey of New South Wales. The Delamerian Orogen is                       |
| highlighted as the grey region (LEFT) however it is known as the Tyennan Orogen                    |
| (Cayley, 2011; Gray et al., 2024) in Tasmania. The drilling region is highlighted in the           |
| red box. The Loch Lilly-Kars Belt, Tarrara-Menindee Trough and Lake Wintlow Belt                   |
| regions are noted. Drill hole locations and ID's plotted are based on GPS co-ordinates             |
| from Geoscience Australia. Known mineral prospects, their type and location have been              |
| taken from Hong et al. 2024                                                                        |
| Figure 4: Thin section photos taken of igneous samples from LLKB captured in both                  |
| PPL and XPL (labelled top left corner). Main minerals labelled in white boxes.                     |
| Abbreviations: Oli = Olivine; Qtz = quartz; Plag = plagioclase; Carb = carbonate; Ox =             |
|                                                                                                    |
| pyrite; Musc = muscovite; Chl = chlorite; Epi = epidote; Vug = hole; Hbl = hornblende;             |
| Ti = Titanite; Zr = Zircon. Colour of sample name correlates to equivalent geochemical             |
| analysis sample. 27                                                                                |
| Figure 5: Back scatter electron map (middle), mineral liberation analyser (MLA) map                |
| (right) and mineral legend (left) of thin section sample LK12-173 and geochemical                  |
| equivalent LK12B. Mineral Mode percentages of MLA mapping of major minerals                        |
| found in Table 6                                                                                   |
| Figure 6: Back scatter electron map (top), mineral liberation analyser (MLA) map                   |
| (bottom) and mineral legend (left) of thin section sample MP02-556 and geochemical                 |
| equivalent MP2A. Mineral mode percentages of MLA mapping of major minerals                         |
| found in Table 6.                                                                                  |
| Figure 7: Back scatter electron map (top), mineral liberation analyser (MLA) map                   |
| (bottom) and mineral legend (left) of thin section sample MP03-548 and geochemical                 |
| equivalent MP3B. Mineral mode percentages of MLA mapping of major minerals found                   |
| in Table 6                                                                                         |
| Figure 8: TOP- Spiderplot of trace element concentrations of igneous samples from                  |
|                                                                                                    |
| LLKB normalised to primitive mantle values (Sun & McDonough, 1995). BOTTOM-                        |
| Spiderplot of REE element concentration in igneous samples from LLKB normalised to                 |
| C1 chondrite values (Anders & Grevesse, 1989). Both are plotted on a log scale 34                  |
| Figure 9: Scatterplot showing the obtained εNd (T) values from TIMS analysis of Sm &               |
| Nd isotopes (Y-axis) against time (Ga) (X-axis) of samples obtained using TIMS                     |
| Sm-Nd analysis. Red star depicts mean Kanmantoo εNd(T) from Foden et al. (2020).                   |
| Depleted mantle evolution line, Chondritic Uniform reservoir (CHUR) line and                       |
| Australian shale $\varepsilon Nd(T)$ evolution values from Rollinson & Pease (2021) plotted. After |
| Rollinson & Pease (2021)                                                                           |

| Figure 10: Isochrons from analysed intrusion samples with ages and intial <sup>8</sup> /Sr/ <sup>86</sup> Sr                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| values along with associated propagated 2σ errors and mean square weighted deviation                                                                                                             |
| (MSWD). Sample name equates to drill hole and depth in hole. Age uncertainty is                                                                                                                  |
| quoted as total age uncertainty                                                                                                                                                                  |
| Figure 11: Isochrons from analysed shale samples with ages, intial <sup>87</sup> Sr/ <sup>86</sup> Sr values                                                                                     |
| along with associated errors and mean square weighted deviation (MSWD). The                                                                                                                      |
| uncoloured circles indicate removed analysis points. Sample name equates to drill hole                                                                                                           |
| and depth in hole. Age uncertainty is quoted as total age uncertainty                                                                                                                            |
| Figure 12: A) Sample MP03-493 mounted in epoxy with the red box depicting the                                                                                                                    |
| mapped region; B) The three distinct pixel maps for phases (Li-rich, Rb-rich & Carb                                                                                                              |
| rich) present in sample MP03-493 (red regions) overlain on <sup>39</sup> K concentration map (left)                                                                                              |
| and <sup>39K</sup> scale (right); C) The three distinct phases in B compiled into one ternary                                                                                                    |
| diagram showing their respective spatial relationships to each other                                                                                                                             |
| Figure 13: (TOP) Isochrons for phase MP03-493-Li (Left) and MP03-493-Rb (Right)                                                                                                                  |
| with ages and $^{87}\text{Sr}/^{86}\text{Sr}_{(i)}$ along with associated $2\sigma$ errors and mean square weighted                                                                              |
| deviation (MSWD). (BOTTOM) ternary map of the pixel regions which each isochron                                                                                                                  |
| was analysed from. Each isoplot is colour coded to its colour in the ternary map 42                                                                                                              |
| Figure 14: A) Sample LK-172 mounted in epoxy with the red box depicting the mapped                                                                                                               |
| region; B) Two distinct pixel maps for phases (Si-rich & Rb-rich) present in sample                                                                                                              |
| LK-172 (red regions) overlain on <sup>29</sup> Si concentration map (left) and <sup>29</sup> Si scale (right); C)                                                                                |
| The two distinct phases in B compiled into one ternary diagram showing their                                                                                                                     |
| respective spatial relationships to each other. 43                                                                                                                                               |
| Figure 15: (LEFT) Isochrons for phase LK-172-Rb (top) and LK-172-Si (bottom) with                                                                                                                |
| ages and initial <sup>87</sup> Sr/ <sup>86</sup> Sr along with associated 2σ errors and mean square weighted deviation (MSWD). (RIGHT) ternary map of their pixel regions that each isochron was |
| analysed from. Each isoplot is colour coded to its colour in the ternary map                                                                                                                     |
| Figure 16: A) Sample MP02-583 mounted in epoxy with the red box depicting the                                                                                                                    |
| mapped region; B) Three distinct pixel maps for phases (Fe-Mg rich veins, Na-rich                                                                                                                |
| phase and K-Al Rich phase) present in sample MP02-583 (red regions) overlain on <sup>56</sup> Fe                                                                                                 |
| concentration map (left) and <sup>56</sup> Fe scale (right); C) The three distinct phases in B                                                                                                   |
| compiled into one ternary diagram showing their respective spatial relationships to each                                                                                                         |
| other                                                                                                                                                                                            |
| Figure 17: Isochrons for phase MP02-583-Fe (top left), MP02-583-Na (top right) and                                                                                                               |
| MP02-583-K (bottom right) with ages and initial <sup>87</sup> Sr/ <sup>86</sup> Sr along with associated 2σ                                                                                      |
| errors (2σ quoted) and mean square weighted deviation (MSWD) and (bottom left)                                                                                                                   |
| ternary map of their pixel regions which each isochron was analysed from. Each isoplot                                                                                                           |
| is colour coded to its colour in the ternary map                                                                                                                                                 |
| Figure 18: An overview of the evolution of the LLKB region from; (A) the initiation of                                                                                                           |
| rifting in Rodinia and (B) subsequent drift from Laurentia to form Gondwana to (C) the                                                                                                           |
| deposition of sediments associated with the passive margin prior to subduction initiation                                                                                                        |
| (Pualco Tillite and Braemer Ironstone Formation) on the margin. Left image is overhead                                                                                                           |
| view and right is a cartoon cross-section from W through E along purple line. The green                                                                                                          |
| star represents the westernmost point of the LLKB                                                                                                                                                |
| Figure 19: A cartoon cross-section of back-arc sedimentation of the Torrawangee and                                                                                                              |
| Dinggali Formations in the back-arc behind the Lake Wintlow Belt during extension in                                                                                                             |
| the LLKB. The red linear shapes in the left image depict the initial Lake Wintlow belt                                                                                                           |
| location and its evolution from 505 Ma to 470 Ma. The left image is an overhead view                                                                                                             |

| and right is a cartoon cross-section from W through E along the purple line. The green star represents the westernmost point of the LLKB |
|------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 21: LEFT- Scatterplot of $\varepsilon Nd_{(T)}$ vs $^{147}Sm/^{144}Nd$ of igneous samples analysed in                             |
| this project (red circles) along with S-type granites, Cambrian mafic volcanics and                                                      |
| Kanmantoo sedimentary rocks from The Delamerian Orogen (Foden et al., 2020) along                                                        |
| with evolution lines of these samples based on specific assimilation fractional                                                          |
| crystallisation (AFC) values. RIGHT- Spiderplot depicting the change in concentration                                                    |
| of trace elements in igneous samples found in the AFB (Foden et al., 2020) compared to                                                   |
| N-MORB values depending on the percentage of assimilated Kanmantoo sedimentary                                                           |
| rocks in the melt and their equivalent εNd (t) values. After Foden et al. (2020) 54                                                      |
| Figure 22: Linework of solid geology map of Loch Lilly-Kars and Lake Wintlow Belts,                                                      |
| New South Wales. The drillholes used in this project are highlighted as pink dots.                                                       |
| Background is a coloured semi-transparent Bouger gravity anomaly grid (Lane et al.,                                                      |
| 2019) above greyscale 0.5 vertical derivative of aeromagnetic data reduced to the pole                                                   |
| (Poudjom Djomani et al., 2019). Blue line is seismic line 96AGS_BH1B from Korsch et                                                      |
| al. (2006). After (Clark et al., 2024)                                                                                                   |
| Figure 23: Time space plot showing the Rb–Sr ages and associated errors of analysed                                                      |
| samples in this project sorted by their drill-hole location. Holes are plotted from most                                                 |
| northwest (left) to most southeast (right). The estimated timing of orogenic events                                                      |
| during Tasmanide formation have been taken from Foden et al. 2020 and plotted as                                                         |
| coloured bars59                                                                                                                          |

### **INTRODUCTION**

Orogenesis is the process of mountain building, often occuring in compressional tectonic regimes (Sengör, 2000: Johnson & Harley, 2012). One compressional tectonic process leading to orogen formation is subduction, the process by which negatively buoyant oceanic crust sinks into the mantle at an active plate margin. The compression focused at the subduction trench is controlled by the degree of plate coupling experienced by the upper plate to the lower plate (Lister et al., 2009). This force is larger with increased buoyancy of the subducting oceanic lithosphere, influenced by its varying morphology such as ribbon microcontinents getting wedged in the trench, or a decrease in the slab-pull force as the slab breaks on descent (An et al., 2024). Due to these fluctuations, the system exhibits periods of extension when plate coupling is low and compression when high (An et al., 2024). It is when plate coupling is high that orogenesis occurs. This process, known as subduction orogenesis, leaves a characteristic signature on the upper plate of a curvilinear 'belt' of igneous rocks of intermediate chemistry, with thrust and fold belts of back-arc sediments behind it (An et al., 2024) observable from geophysical datasets like magnetic intensity or density.

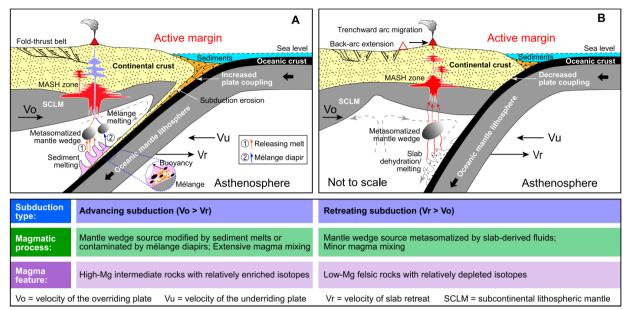



Figure 1: Schematic diagram showing subduction zone types and corresponding structure and deformation records in the upper plate (modified after Cawood et al., 2009; Straub et al., 2020; Chapman et al., 2021). After An et al., (2024). MASH—melting, assimilation, storage, homogenization.

This geophysical anomaly is caused by the subduction process, where the volatile-rich slab releases fluids into the mantle wedge approximately 100 km from the trench. The addition of volatiles here decreases the melting temperature of the mantle above the slab, leading to adiabatic melting of the mantle wedge and the formation of volcanos and igneous suites parallel to the subduction trench on the upper plate (Figure 1). This phenomenon is seen in present day regions such as the Andes. These 'belts' are important to society for their mineral potential. The process of volatile input, caused by subduction, into the mantle below these volcanoes and subsequent crustal assimilation (Huston et al., 2015) is crucial to the formation of porphyry mineral systems (Sillitoe, 2010) exploited for copper and zinc.

This paper focuses on the Delamerian Orogeny, located east of the Gawler Craton in central Australia. It formed as the paleo-Pacific Ocean subducted beneath Gondwana in the final stages of its assembly from 515–490 Ma (Moresi et al., 2014; Foden et al.,

2006; 2020). The volcanic arc associated with this orogen is hypothesised to consist of the Stavely Arc, located in western Victoria and the Koonenberry Belt in New South Wales, which contain several porphyry systems (Huston et al., 2015; Hong et al., 2023), indicating the relevance of this paper to mineral exploration. However, due to burial under Murray-Darling Basin sedimentary cover, the 'link' between these two regions has not historically received the same exploration focus. Recent analysis has deduced that the belt of igneous rocks linking these regions continues undercover through the Loch-Lilly Kars Belt (LLKB) (Hong et al., 2023) in southwestern NSW, indicating significant regional greenfields mineral potential.

Using core samples drilled by Geoscience Australia (GA) as part of the MinEx Cooperative Research Centre's (MinExCRC) National Drilling Initiative (NDI) (Mole et al., 2024) in the LLKB, this study aims to deduce the composition, age, and tectonic evolution of this early Cambrian subduction margin by; analysing the geochemistry of igneous suites, constraining the age of sedimentation and igneous suite emplacement events. Methods utilised involve in-situ <sup>87</sup>Rb/<sup>86</sup>Sr and trace element Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) analysis of shales and intrusives, along with the dating of hydrothermal activity and carbonate formation with U–Pb LA-ICP-MS carbonate dating. The geochemical and geochronological findings in this study may imply a genetic link to the Stavely Arc and Koonenberry Belt to the south and north respectively.

### **GEOLOGICAL BACKGROUND**

### The Tasmanides

The Tasmanides are a series of accretionary orogenic systems that form the eastern third of Australia, east of the Tasman Line (Foster & Gray, 2000), resulting from the initiation of west-dipping subduction of the palaeo-Pacific Ocean beneath the eastern margin of Gondwana. They formed *ca.* 515–230 Ma (Foden et al., 2020; Glen & Cooper, 2021: Greenfield et al., 2011; Gray & Foster, 2004) and are characterized by repetitive cycles of long periods of extension as the subduction zone rolled back and short pulses of compression as previously rifted microcontinents collided with the subduction trench. These compressional phases include the Delamerian (*ca.* 515–490 Ma), Benambran (*ca.* 460–425 Ma), Tabberabberan (*ca.* 390–380 Ma), Kanimblan (*ca.* 360–340 Ma) and Hunter Bowen (*ca.* 260–230 Ma) orogenies (Glen & Cooper, 2021; Foden et al., 2020; Shaanan et al., 2018).

### The Delamerian Orogen

The Delamerian Orogen formed during the final stages of Gondwanan assembly in the Cambrian (*ca.* 515–490 Ma) (Foden et al., 2020; 2006) and is interpreted to be the first orogenic cycle of the Tasmanide sequence. It makes up a small part of the system called the 'Terra Australis Orogen' (Cawood, 2005: Paulsen et al., 2023) (Figure 2) that ran along the southern Gondwanan margin from South Africa through Antarctica and Australia (Foden et al., 2020; Paulsen et al., 2023).

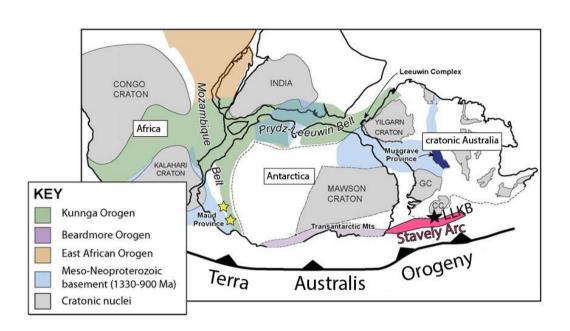



Figure 2: Location map of the Terra Australis Orogen and it's position relative to Australia's position within the Gondwanan continent in the Cambrian Period. Cratonic Australia, Antarctica, Africa and India are labelled. The hypothesised location of the Stavely Arc and Loch Lilly-Kars Belt (LLKB) are labelled. After Johnson et al. (2016).

The orogen has been extensively studied due to its structural complexity and mineral endowment (Huston et al., 2015). Mineral deposits have been preserved due to the orogen's short-lived nature, as the collision of microcontinental blocks with the subduction zone caused the system to jump outboard to the Macquarie Arc in the Ordovician (Crawford et al., 2007), preserving the arc a further distance from the active plate margin. The orogen spans from Tasmania (where it is known as the Tyennan Orogen) (Cayley, 2011; Gray et al., 2024) north to western New South Wales (NSW) and consists of discontinuous 'belts' of high magnetic intensity interpreted as arc slices. These have been faulted, likely resulting from a series of collisions during Tasmanide formation (Abdullah & Rosenbaum, 2018; Bailey et al., 2018), including that of VanDieland, a rifted microcontinent that was discarded from the western edge of Laurentia as the proto-Pacific Ocean opened. This collision with the continental margin

of Gondwana is believed to have terminated the Delamerian Orogeny (Huston et al., 2015; Gray et al., 2024). Previous research has indicated that the Delamerian Orogen contained a continuous volcanic arc, presently sitting in the Stavely region of Victoria and the Koonenberry Belt region of NSW (Foden et al., 2020). This hypothesis is supported by the presence of igneous rocks with ages ranging from *ca.* 515 Ma to 500 Ma (Foden et al., 2020; Bailey et al., 2018; Johnson et al., 2016) of andesitic and dacitic composition in both the Stavely and Koonenberry regions. They are interpreted as subduction derived, due to their light rare earth element (LREE) enrichment and negative Eu anomalies (Lewis et al., 2015) and hosted within back-arc sediments derived from central Gondwana (Crawford et al., 2007), namely the Normanville and Kanmantoo groups in the Adelaide Fold Belt (AFB), the Nargoon and Glenthomson groups in the Stavely Zone and Ponto and Teltawongee groups in the Koonenberry Belt. However, proving its existence between the two, through the Loch Lilly-Kars Belt (LLKB), has proved difficult due to its burial under younger sedimentary cover.

### The Loch Lilly-Kars Belt

The LLKB covers an area of 40 km by 200 km, trending NE–SW adjacent the Curnamona Craton (Figure 3). The belt itself has no surface expression, covered by the Cenozoic sediments of the Murray-Darling Basin (Baatar et al., 2020). Until NDI drilling in 2023 by GA, all geological interpretation came from eight drill holes into the basement and airborne geophysical data (Baatar er al., 2020). These drillholes intersected undated tholeitic metabasalts and dolerites (Baatar et al., 2020) formed on a rifting margin associated with the breakup of Rodinia, equivalent to the Mount Arrowsmith Volcanics in the Koonenberry Belt (Crawford et al., 1997), and intermediate and felsic igneous rocks dated in two pulses; (*ca.* 496 Ma) Cambrian and

(ca. 393 Ma) Devonian (Baatar et al., 2020). These later intrusions sit within the Lake Wintlow Belt (Figure 3). This belt is separated from the LLKB by the Tarrara-Menindee Trough (Clark et al., 2024) and the ages closely correlate with intermediate intrusions found in the Stavely Arc and Koonenberry Belt. The tectonic setting for these intrusions has not been a focus of previous research and this paper uses new samples to further understand the tectonic evolution of the LLKB during Tasmanide formation.

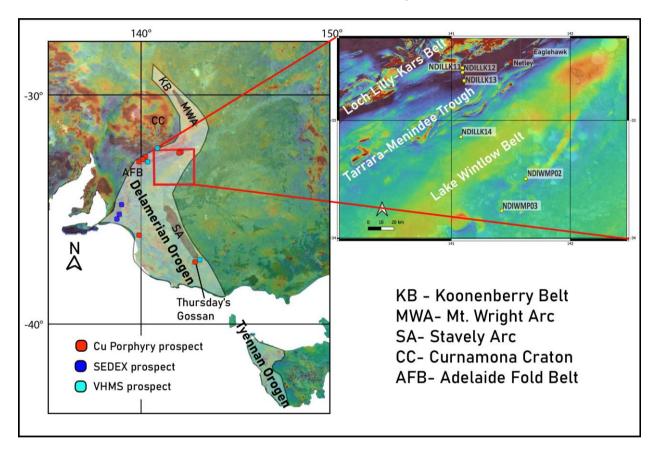



Figure 3: Total magnetic intensity map of south-eastern Australia obtained through SARIG and The Geological Survey of New South Wales. The Delamerian Orogen is highlighted as the grey region (LEFT) however it is known as the Tyennan Orogen (Cayley, 2011; Gray et al., 2024) in Tasmania. The drilling region is highlighted in the red box. The Loch Lilly-Kars Belt, Tarrara-Menindee Trough and Lake Wintlow Belt regions are noted. Drill hole locations and ID's plotted are based on GPS co-ordinates from Geoscience Australia. Known mineral prospects, their type and location have been taken from Hong et al. 2024

### Delamerian mineralisation and its link to subduction

The porphyry mineral systems found in the orogens of the Tasmanides, specifically in the Mt Stavely Volcanic zone and Macquarie Arc, are intrinsically linked to subduction. Thursday's Gossan, a recently discovered Cu-porphyry deposit in Victoria adds to the growing number of deposits found within Delamerian sequences (Hong et al., 2024), showing the potential for further discoveries (Figure 3). Huston et al. (2015) suggested that the switching from 'advancing-type' to 'retreating-type' subduction is paramount in ore deposit formation. The compressional state of advancing subduction induces the constriction of magma pathways, trapping arc magmas at depth, facilitating continued fractionation and evolution towards higher metal concentrations (Chen et al., 2023). Subsequently, the switch to retreating subduction and coeval extension re-opens these pathways, allowing the buoyant metal-endowed magmas to infiltrate the upper crust and form porphyries (Huston et al., 2015). This hypothesis is supported by alteration textures associated with Tasmanide porphyry mineralisation commonly being dated to shortly after the end of an orogenic event (Hong et al. 2024).

### **METHODS**

### Sample collection and preparation

The samples analysed in this project were obtained during the NDI by MinExCRC. Specifically, from 'NDI Campaign 5: Delamerian Margins NSW NDI' from March to June 2023. The following holes were targeted for this study: NDILLK11, NDILLK12, NDILLK13, NDILLK14, NDIWMP02 and NDIWMP03 (GPS coordinates provided in Appendix 1). 22 samples were obtained for this project (Appendix 2). The targeted lithologies were shales, carbonates, granodiorites and cross-cutting dykes. The intention being to understand the age of deposition and volcanism, the nature of igneous rocks and their subsequent alteration.

### **Petrography**

Six samples were selected for thin section analysis based on structural relationships and mineralogy present in core samples. Samples were cut using the small diamond saw and sent to Thin Section Australia for mounting.

Detailed descriptions and photos of mineralogy were done using a Leica Petrographic Microscope (DS2700P) with a mounted camera and LASx software. Photos were taken in both PPL and XPL. Table 1 gives sample names and reason for analysis.

Table 1: Sample name and geochemical equivalent and reasons for thin section analysis.

| Sample Name | Geochemical equivalent | Reason for selection                                                                                                                                                                    |
|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LK12-172    | LK12A                  | Selected to determine the mineralogy of a very-fine grained dyke within drill-hole NDILLK12. This sample is taken away from any contacts with the host shale.                           |
| LK12-173    | LK12B                  | Selected to analyse the alteration textures of the dyke in <b>LLK12-172</b> . It includes the preserved shale-dyke contact.                                                             |
| MP02-556    | MP2A                   | Selected to determine the alteration type that dominates this sample, its associated textures and the mineralogy of breccia infill within the sample.                                   |
| MP02-628    | MP2B                   | Selected due to its fresh appearance. The only fresh sample from this hole with the rest of the samples looking similar to <b>MP02-556.</b>                                             |
| MP03-493    | MP3A                   | The freshest igneous sample in this project, it also contains quite a coarse assemblage of minerals, suggesting crystal texture and zonation textures of plagioclase should be evident. |
| MP03-548    | МРЗВ                   | Comparison to see the mineralogical differences between an unaltered igneous sample (MP03-493) and this sample which has been altered by later hydrothermal fluids.                     |

### **Scanning Electron Microscopy**

Three samples (LLK12-173, MP02-556 & MP03-548) prepared for thin section petrography were imaged using Hitachi SU3800 Scanning Electron Microscope (SEM), and automated mineralogy Mineral Liberation Analyses (MLA) after being carbon-coated. Backscatter electron maps were collected, assisting with petrography and understanding different mineral phases. LLK12-173, a shale-dyke contact, was targeted for its complexity, MP02-556, an alteration breccia, to deduce alteration type, and MP03-548, a fresh igneous sample, for modal mineral percentages.

### **Solution ICP-MS**

Six igneous samples were selected for whole-rock geochemical analysis. Sample pulps underwent whole-rock digestion using the Mawson Analytical Spectrometry Services (MASS) at the University of Adelaide, following the method outlined by Wade et al. (2005). A full description is available in Appendix 16.

A 1:1000 dilution was used for analysis of rare earth elements (REEs) and a 1:100000 dilution for major elements. These were analysed at Adelaide Microscopy using the solution ICP-MS Agilent 8900x QQQ-ICP-MS. Standard values for USGS G-2 and BHVO-1 (Flanagan, 1976) were within uncertainty of published values and are provided with raw data (Appendix 13).

### Thermal Ionisation Mass Spectrometry (TIMS)

Samples were prepared and analysed for Sm–Nd within MASS at the University of Adelaide. Samples were spiked with <sup>150</sup>Nd/<sup>147</sup>Sm solution and underwent whole-rock digestion (full description in Appendix 17). Sm–Nd isotopes were isolated using

column chromatography following the method outlined in Foden et al. (1995). Isotope ratios were measured using the Isotopx Phoenix Thermal Ionisation Mass Spectrometer. The international Nd standard JNdi-1 yielded  $^{143}$ Nd/ $^{144}$ Nd values of 0.512107  $\pm$  0.000003 (2 s.d.) within uncertainty of published values (0.512115  $\pm$  0.000007) (Tanaka et al., 2000). Blanks showed negligible Nd and Sm.

### LA-ICP-MS

### IN-SITU RUBIDIUM-STRONTIUM AND TRACE ELEMENT ANALYSIS

Laser spot analysis

The method outlined by Subarkah et al. (2022), and Redaa et al. (2023) was followed. Samples were selected with the aim of constraining minimum depositional or intrusion ages. Shale samples with the lowest detrital input and igneous samples containing micarich phases were selected. Rock chips were cut using a diamond saw in the Mawson Building at the University of Adelaide, mounted in epoxy resin and polished to expose the sample. Analysis of samples was conducted at Adelaide Microscopy using LA-ICP-MS/MS with the RESOlution 193nm excimer laser ablation system coupled with an Agilent 7900x ICP-MS system. The primary standards for calibration were MDC for crystal minerals and Mica-MG for shales following Glorie et al. (2024) and Subarkah et al. (2022), respectively. Secondary standards were Robins Folly muscovite and Entire Creek pegmatite (Table 3, references therein). Each sample was analysed with the parameters outlined in Appendix 13. Data were processed using LADR (Norris and Danyushevsky, 2018). Spots with unusual signals were filtered by analysing the laser signature on LADR with evidence for ablation of apatite or zircons removed for accuracy. The reasoning omitting individual points can be found in Appendix 15. A

secondary correction was applied with MDC accounting for matrix effects between analysing potassic minerals (i.e. feldspar, mica or clay) and a glass (Glorie et al., 2024). IsoplotR (Vermeesch, 2018) was used to calculate an isochron line and equivalent errors. The total age uncertainty was propagated by accounting for  $^{87}$ Rb decay constant uncertainty (0.000013972  $\pm$  4.5e $^{-8}$ Myr $^{-1}$ ) (Gorojovsky & Alard, 2020), analysed age uncertainty and reference material age uncertainty following Redaa et al. (2021).

### Raster mapping analysis

The method outlined by Subarkah et al. (2024) was followed but modified for Rb–Sr raster geochronology. Laser mapping was carried out with the parameters outlined in Table 2. Element dwell times are presented in Appendix 4. Samples exhibiting the most albitic or potassic alteration were targeted with the aim to obtain ages for both host rock and alteration textures in each chip.

Table 2: Parameters for data acquisition of Rb-Sr alteration mapping LA-ICP-MS

| Sample ID | Date of session | Spot Size (µm) | # of rasters | Mapping Time (s) |
|-----------|-----------------|----------------|--------------|------------------|
| LK12-172  | 31/05/2024      | 80             | 30           | 1887             |
| LK12-173  | 31/05/2024      | 80             | 29           | 2021             |
| MP02-493  | 31/05/2024      | 38             | 40           | 13990            |
| MP02-556  | 31/05/2024      | 38             | 69           | 5507             |
| MP02-579  | 27/06/2024      | 80             | 35           | 2376             |
| MP02-583  | 27/06/2024      | 80             | 25           | 2322             |
| MP03-546  | 31/05/2024      | 38             | 40           | 4067             |

Successive raster scans were programmed with no overlap between each line, ensuring a coherent region of analyses. The rasters targeted contacts between intrusion or alteration and host rock. The primary standard for calibration was MDC with secondary standards Ruby Mine muscovite and Robins Folly muscovite (Table 3, references therein). Each standard was analysed with 20 rasters of equivalent size to analysed samples (38, 80 μm). These were bracketed between samples. All analysed standards returned ages within error of published values (Table 3). NIST610 was used to correct instrument drift and quantify elemental concentrations and ratios. Data was processed using Iolite4 (Petrus et al., 2017; Paton et al., 2011) to create elemental concentration maps. The spatial relationship of elemental concentrations within these maps determined the separate alteration events for analysis and pixel selection was undertaken using the polygon or elemental concentration cut-offs tools, forming separate datasets for different phases within one sample. These pixel sets were pooled and subdivided into a set of Rb-Sr analytical points based on their <sup>39</sup>K ratios, maximising ratio spread and producing an optimised isochron. Each analytical point was comprised of a minimum of 30 pixels. The secondary correction was applied with Excel using MDC to account for matrix effects between analysing potassic minerals and glass following Glorie et al. (2024). IsoplotR (Vermeesch, 2018) was used to calculate an isochron line and equivalent errors. The total age uncertainty was calculated using the same method as laser spot analysis above.

Table 3: Standards used in Rb–Sr LA-ICP-MS analysis and their published ages and associated errors ( $2\sigma$  quoted).

| Standard Name             | Analysed Map<br>Age (Ma) | Analysed Spot Age (Ma) | Ref. age (Ma) | Reference                                     |
|---------------------------|--------------------------|------------------------|---------------|-----------------------------------------------|
| MDC                       | 511 ± 3.9                | 491.9 ± 6.2            | 519.4 ± 6.5   | Reeda et al. 2021<br>Hogmalm et al.<br>2017   |
| Mica-MG<br>nanopowder     | NOT USED                 | 488 ± 5.9              | 519.4 ± 6.5   | Glorie et al. 2024                            |
| Ruby Mine<br>muscovite    | $329 \pm 7.9$            | NOT USED               | 324 ± 3       | Mortimer et al.<br>1987                       |
| Robins Folly<br>muscovite | $338.7 \pm 5.6$          | $330.6 \pm 2.1$        | 332 ± 2       | Mortimer et al.<br>1987                       |
| Entire Creek<br>pegmatite | NOT USED                 | 320.5 ± 3.4            | 312.1 ± 5.1   | Glorie et al. 2024<br>Mortimer et al.<br>1987 |

# IN-SITU URANIUM-LEAD AND TRACE ELEMENT CARBONATE MAPPING ANALYSIS

The method outlined by Drost et al. (2018) and Subarkah et al. (2024) was followed. U-Pb isotopic analyses were acquired using the RESOlution 193nm laser coupled with an Agilent 8900x ICP-MS/MS. Carbonate beds from drillholes NDILLK13 and NDILLK14 were selected to constrain the age of deposition. Carbonate veins were targeted to constrain deformation or alteration. Sample preparation followed the Rb-Sr raster mapping method above. Laser mapping was carried out with specific parameters presented in Table 4. Element dwell times are presented in Appendix 5. NIST610 was used to correct drift and quantify elements. A secondary correction was then applied using Excel based on the analysed versus published age of primary standard WC-1.

RA138, Mexican Tank and Duff Brown Tank were analysed as secondary standards (Table 5, references therein) to ensure the secondary correction from WC-1 was accurate.

Table 4: Parameters for data acquisition of U-Pb carbonate mapping LA-ICP-MS analysis

| Sample ID | Date of session | Spot Size | # of rasters | <b>Mapping Time</b> |
|-----------|-----------------|-----------|--------------|---------------------|
|           |                 | (µm)      |              | (s)                 |
| LK12-186  | 1/08/2024       | 80        | 30           | 7050                |
| LK12-173  | 1/08/2024       | 80        | 20           | 5020                |
| LK12-173B | 1/08/2024       | 80        | 41           | 5494                |
| LK13-184  | 1/08/2024       | 80        | 51           | 6681                |
| LK13-198  | 1/08/2024       | 80        | 36           | 5904                |
| LK14-365  | 1/08/2024       | 80        | 31           | 6634                |
| LK14-214  | 1/08/2024       | 80        | 31           | 6789                |
| LK14-215  | 1/08/2024       | 80        | 26           | 6786                |
| LK12-172U | 1/08/2024       | 80        | 21           | 6153                |
| P02-493   | 1/08/2024       | 80        | 31           | 7719                |
| LK12-173U | 1/08/2024       | 80        | 41           | 6888                |

Table 5: Standards used in U–Pb LA-ICP-MS analysis, their analysed age, their published ages and associated errors ( $2\sigma$  quoted).

| Standard Name     | Analysed Age +/- (Ma) | <b>Ref. Age +/- (Ma)</b> | Reference            |
|-------------------|-----------------------|--------------------------|----------------------|
| WC1               | $234.0 \pm 2.7$       | 254.4 ± 6.4              | Roberts et al. 2017  |
| RA138             | $324.9 \pm 2.8$       | $321.99 \pm 0.65$        | Guillong et al. 2024 |
| Mexican Tank      | 62 ± 2                | $60.5 \pm 4.6$           | Hill et al. 2016     |
| <b>Duff Brown</b> | $64.7 \pm 1.5$        | $64.04 \pm 0.67$         | Hill et al. 2016     |
| Tank              |                       |                          |                      |

Data were processed using Iolite4's U-Pb geochronology DRS (Petrus et al., 2017;

Paton et al., 2011). Laser maps were smoothed using built-in box smoothing filters

including gaussian and median. Regions enriched in detrital proxy elements (Al, Si, Rb, Zr and Th) were used to select pixels for detrital carbonate in samples, while proxies for post-depositional alteration (Mn/Sr ratios, Fe and Y) determined regions of interest for carbonate veins. A minimum of 30 pixels comprised an analytical point. IsoplotR (Vermeesch, 2018) was used to calculate an isochron line.

### **OBSERVATIONS AND RESULTS**

### General sample overview

All drill cores have been logged by GA. The following paragraphs give an overview of the lithologies sampled in this study and their interpreted formation, with detailed petrography to follow.

### SEDIMENTARY ROCKS

The sedimentary rocks in this project overlie the passive margin sediments of the Pualco Tillite and Braemer Ironstone Formations (Mole et al., 2024). Fine grained laminated shales from hole NDILLK11 at depths of 369 m and 323 m and NDILLK12 between 172 m and 186 m were sampled. These are interpreted to form part of the Torrawangee Group, described by Clark et al. (2024) as the most texturally and compositionally mature sedimentary rocks in the LLKB. Recent Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb dating indicates a maximum depositional age of *ca.* 604 Ma making them comparable to other Cambrian to Neoproterozoic sedimentary rocks of the Delamerian Orogen such as the Wilpena Group (Heysen Supergroup) (Mole et al., 2024).

Samples from holes NDILLK13 taken from between 194 m and 215 m and NDILLK14 from 365 m to 379 m contain similar sedimentary packages to the Torrawangee Group shales of NDILLK11, however, they contain consistent sub-millimetre scale carbonate beds. These are part of the newly named middle Cambrian Danggali Formation and show similarities to the Ponto Group sedimentary rocks in the Koonenberry Belt (Clark et al., 2024), constrained to have been deposited between 585–515 Ma and are indicative of the formation of a deepening basin likely associated with the onset of subduction in the Koonenberry Belt (Johnson et al., 2016).

### **IGNEOUS SAMPLES**

Medium and fine-grained intermediate intrusions from NDIWMP02 and NDIWMP03 and ultra-fine grained mafic dykes present in NDILLK12 were sampled.

The fine-grained mafic dykes from drillhole NDILLK12 are presently unnamed by GA since their discovery in 2023 (Mole et al., 2024) but have been interpreted to have a maximum age of *ca*. 497 Ma from U–Pb SHRIMP analysis of zircons. They appear unique to the LLKB with no obvious links to other suites in the Delamerian from preliminary analysis (Mole et al., 2024).

Samples from drillholes NDIWMP02 and NDIWMP03 in the LWB range from granitic to granodioritic in composition based on their geochemistry but are currently unnamed (Mole et al., 2024). Recent U–Pb SHRIMP analysis of zircons suggest a formation age *ca.* 510–500 Ma (Mole et al., 2024). These ages align with Stavely Arc suites but are younger than equivalent samples in the Koonenberry Belt.

Altered regions in the drill cores including dyke-shale contact halos and albitic hematite alteration of host rock were analysed with the purpose of constraining fluid flow ages and post formation tectonic processes in the LLKB. Sample images and equivalent sample names are available in Appendix 2

### **Petrography**

Petrographic analysis was conducted on thin sections using petrographic microscopy and SEM imaging for the purpose of deducing mineral assemblages, relationships and in the case of reflected light imaging, deducing oxide types. The main mineral phases have been highlighted in Figure 4. Table 6 presents the key minerals and textural observations found in samples using the petrographic microscope and mineral modes determined using MLA mapping analysis. A full petrographic description for each sample is available in Appendix 3.

Table 6: Table of thin section selections of igneous rocks for analysis and its geochemical sample name equivalent. Where mineral composition % is to two decimal figures, they have come from MLA mapping. Only major mineral phases have been included in the table.

| Sample   | Geochem<br>equivalent | Description                                                                                                                                                                                                                                                                                                                                            | Rock Type                             | Mineral Composition                                                                                            |                                                          |
|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| LK12-172 | LK12A                 | Fine-grained intrusion dominated by glass (>70%) groundmass. Fine grained, tabular plagioclase crystals and highly altered coarse-grained exolivine crystals and plagioclase are the only obvious minerals. Sample is crosscut by multiple generations of carbonate veins.                                                                             | Olivine basalt<br>(Mole et al., 2024) | Groundmass – 70%<br>Ex-olivine – 20%<br>Plagioclase – 5%<br>Carbonate – 5%                                     |                                                          |
| LK12-173 | LK12B                 | Equivalent intrusion to <b>LLK12-172</b> but contains the contact with the host shale. Intrusion dominated by glass (>60%) groundmass with finegrained tabular muscovite oriented in direction of contact. Intrusion contains disseminated and veined pyrite. The veins are carbonate. The alteration halo is dominated by carbonate bearing minerals. | Olivine basalt<br>(Mole et al., 2024) | Kaersutite – 37.31%<br>Muscovite – 9.78%<br>Magnesiohornblende – 6.67%<br>Chlorite – 5.97%<br>Ankerite – 1.56% | Biotite – 18.27%<br>Quartz – 9.64%<br>Albite – 5.07%     |
| MP02-556 | MP2A                  | Sample completely dominated by albite alteration. Evidence for original plagioclase and hornblende remains but recrystalised. Breccia infill veins filled with calcite + chlorite + epidote + quartz and small amounts titanite. Potassic alteration present away from veins.                                                                          | Albite breccia                        | Albite – 49.86%<br>Quartz – 30.42%<br>Orthoclase - 6.52%<br>Chlorite – 4.04%                                   | Biotite – 1.99%<br>Calcite – 1.63%                       |
| MP02-628 | MP2B                  | Fine-grained igneous intrusive. Sample contains a very simple mineralogy of quartz, plagioclase, biotite and chlorite. The coarsest mineral phase is biotite, which grows in isolated clumps throughout. Chlorite replacement of this biotite occurs around the rim of these                                                                           | Granite                               | Quartz – 40%<br>Plagioclase – 35%<br>Biotite – 23%<br>Chlorite – 2%                                            |                                                          |
| MP03-493 | MP3A                  | clumps. Coarse-grained intrusion containing iron-stained quartz, sieve-textured plagioclase, hornblende, rutile, biotite and zircon. Alteration assemblage of epidote + chlorite replacing biotite. Plagioclase with sieve texture and hornblende prevalent. Zircon and rutile are minor phases. Largest mineral is plagioclase.                       | Granodiorite                          | Quartz – 30%<br>Plagioclase – 30%<br>Hornblende – 20%<br>Biotite – 10%<br>Chlorite – 5%                        | Muscovite – 4%<br>Zircon – <1%                           |
| MP03-548 | MP3B                  | Homblende is the largest mineral phase along with sieve-textured plagioclase and large titanite crystals which are not present in <b>MP03-493</b> . Alteration of biotite significantly more prevalent in this sample with original biotite almost completely replaced by chlorite. Quartz has more iron staining than <b>MP03-493</b> .               | Granodiorite                          | Quartz - 31.252%<br>Albite – 17.55%<br>Orthoclase – 15.22%<br>Anorthite – 10.70%<br>Magnesiohornblende – 7.33% | Chlorite – 7.02%<br>Muscovite – 4.78%<br>Epidote – 2.25% |

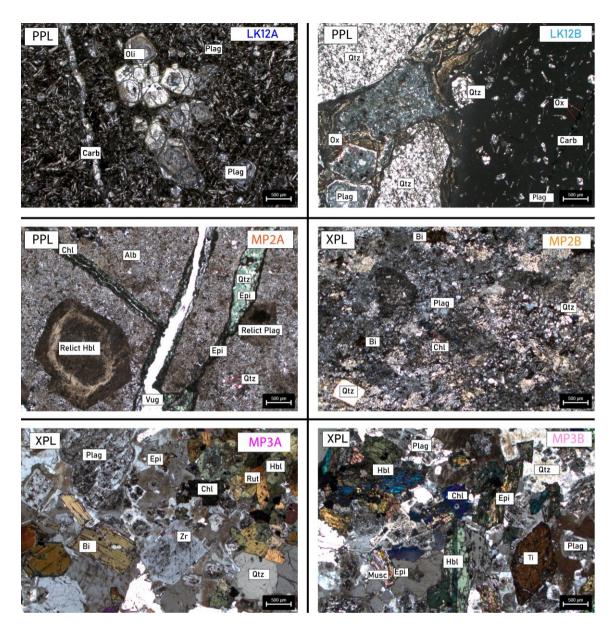



Figure 4: Thin section photos taken of igneous samples from LLKB captured in both PPL and XPL (labelled top left corner). Main minerals labelled in white boxes. Abbreviations: Oli = Olivine; Qtz = quartz; Plag = plagioclase; Carb = carbonate; Ox = pyrite; Musc = muscovite; Chl = chlorite; Epi = epidote; Vug = hole; Hbl = hornblende; Ti = Titanite; Zr = Zircon. Colour of sample name correlates to equivalent geochemical analysis sample.

### **SEM**

MLA/BSE MAPS

Sample LK12-173

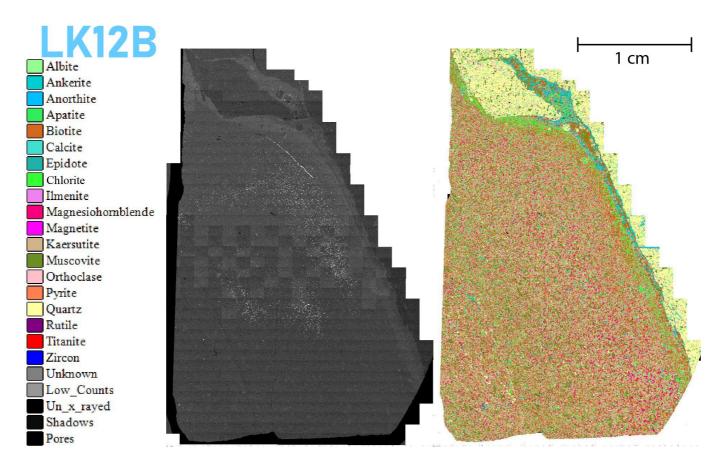



Figure 5: Back scatter electron map (middle), mineral liberation analyser (MLA) map (right) and mineral legend (left) of thin section sample LK12-173 and geochemical equivalent LK12B. Mineral Mode percentages of MLA mapping of major minerals found in Table 6.

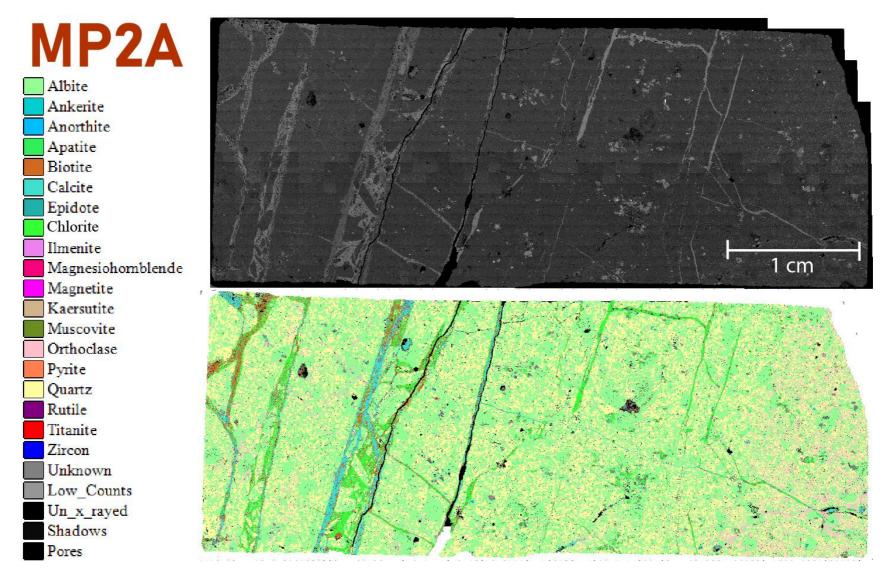



Figure 6: Back scatter electron map (top), mineral liberation analyser (MLA) map (bottom) and mineral legend (left) of thin section sample MP02-556 and geochemical equivalent MP2A. Mineral mode percentages of MLA mapping of major minerals found in Table 6.

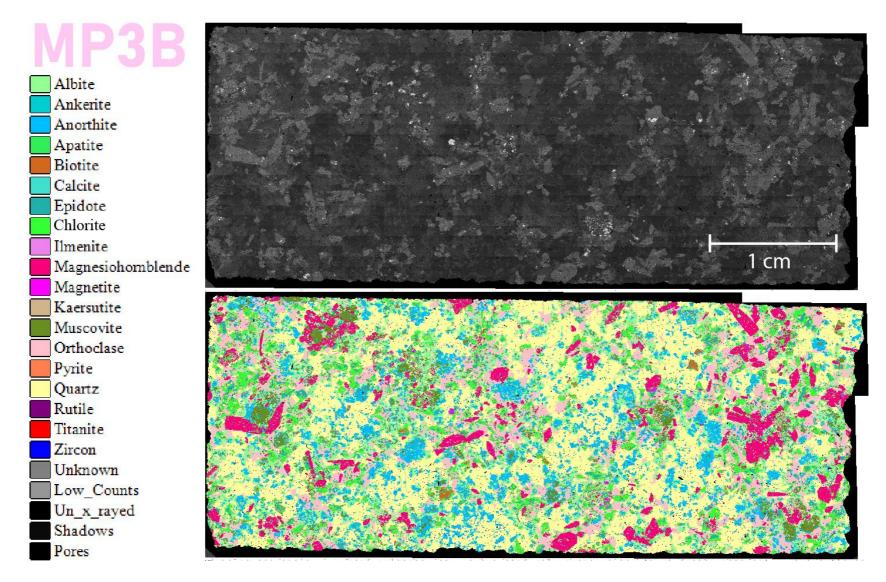



Figure 7: Back scatter electron map (top), mineral liberation analyser (MLA) map (bottom) and mineral legend (left) of thin section sample MP03-548 and geochemical equivalent MP3B. Mineral mode percentages of MLA mapping of major minerals found in Table 6.

### Geochemistry

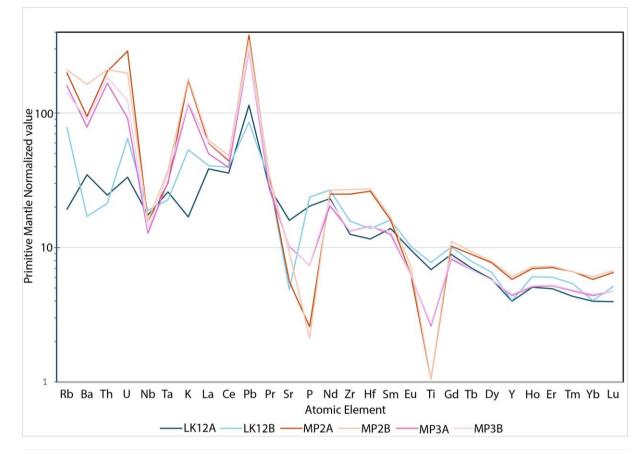
### **SOLUTION ICP-MS**

Six igneous samples were selected for major and trace element analyses with whole rock images available in Appendix 2. Data are displayed on spider plots (Figure 8) whereby REEs were normalised to values for C1 chondrites (Anders & Grevesse, 1989), while major and trace elements were normalised to primitive mantle values (Mcdonough & Sun, 1995) (Figure 8). All elemental concentrations are available in Appendix 14. Below are selected and representative values from the samples analysed in this study (Table 7 and 8). They form the basis for the following paragraphs. Based on the results of ICP-MS, two separate suites appear to exist and will be discussed separately: the LK12 dykes, and MP granites and granodiorites.

Table 7: Oxide weight percent values, europium and niobium anomalies and REE slopes calculated from solution ICP-MS analysis of igneous samples.

| Sample | Mg#   | TiO <sub>2</sub> (wt%) | P <sub>2</sub> O <sub>5</sub> (wt%) | Fe <sub>2</sub> O <sub>3</sub> (wt%) | Eu/Eu* | Nb/Nb* | Total REE<br>slope (La/Lu) | LREE slope<br>(La/Sm) | HREE slope<br>(Gd/Lu) |
|--------|-------|------------------------|-------------------------------------|--------------------------------------|--------|--------|----------------------------|-----------------------|-----------------------|
| LK12A  | 45.83 | 1.50                   | 0.43                                | 8.67                                 | 0.86   | 0.57   | 9.34                       | 2.69                  | 2.23                  |
| LK12B  | 30.90 | 1.72                   | 0.48                                | 12.20                                | 0.80   | 0.64   | 7.60                       | 2.46                  | 1.93                  |
| MP2A   | 10.89 | 0.22                   | 0.05                                | 2.05                                 | 0.48   | 0.14   | 8.78                       | 3.62                  | 1.57                  |
| MP2B   | 9.35  | 0.22                   | 0.05                                | 2.34                                 | 0.53   | 0.14   | 8.95                       | 3.63                  | 1.62                  |
| MP3A   | 26.75 | 0.56                   | 0.12                                | 5.74                                 | 0.61   | 0.14   | 10.10                      | 3.85                  | 1.69                  |
| МРЗВ   | 26.04 | 0.57                   | 0.12                                | 5.96                                 | 0.58   | 0.13   | 12.22                      | 4.43                  | 1.76                  |

Table 8: Table showing detected ppm values of selected elements present in six igneous samples from LLKB in 1:1000 and 1:1000000 dilution samples run on solution ICP-MS.


| Element conc. (PPM) | LK12A    | LK12B    | MP2A     | MP2B     | <b>МРЗА</b> | МРЗВ     |
|---------------------|----------|----------|----------|----------|-------------|----------|
| Li                  | 35.57    | 61.92    | 7.67     | 15.63    | 31.41       | 14.71    |
| Mg                  | 42271.31 | 31780.13 | 1670.28  | 1626.49  | 13919.08    | 13675.18 |
| Р                   | 1935.62  | 2269.08  | 244.15   | 202.61   | 709.53      | 711.44   |
| Ca                  | 62964.18 | 41148.69 | 7147.30  | 20195.41 | 39332.32    | 34881.68 |
| Ti                  | 8937.40  | 10143.43 | 1364.18  | 1380.02  | 3433.51     | 3533.39  |
| V                   | 199.75   | 225.43   | 5.62     | 3.96     | 111.34      | 111.44   |
| Cr                  | 234.41   | 212.34   | 1.33     | 0.67     | 41.37       | 30.60    |
| Mn                  | 920.62   | 1068.49  | 250.56   | 230.51   | 687.09      | 773.10   |
| Fe                  | 56293.45 | 77812.60 | 13392.25 | 15578.42 | 37633.12    | 39085.19 |
| Ni                  | 117.87   | 99.33    | 0.58     | 0.59     | 9.54        | 9.64     |
| Cu                  | 41.13    | 37.51    | 12.91    | 10.58    | 14.88       | 12.24    |
| Rb                  | 12.27    | 49.96    | 125.89   | 134.56   | 102.89      | 90.64    |
| Ва                  | 243.65   | 120.01   | 657.57   | 1154.54  | 557.03      | 626.92   |
| Pb                  | 8.16     | 6.14     | 26.88    | 25.06    | 21.01       | 21.19    |
| Th                  | 2.09     | 1.82     | 17.35    | 18.07    | 14.39       | 15.77    |

### LK12 olivine basalt dykes

The samples from drillhole NDILLK12 to the north-west (LK12A and LK12B) are differentiated by their large Mg# of greater than 30 and largest proportion of compatible oxides in the project with percentages for titanium, phosphorus and iron oxides of greater than 1.5, 0.43 and 8.67 respectively (Table 7). They have relatively small europium anomalies (0.86 and 0.8) and slightly larger niobium anomalies (0.57 and 0.64). They contain larger LREE slopes (2.69 and 2.46) than heavy rare earth element (HREE) slopes (2.23 and 1.93) (Table 7) and contain significant proportions of compatible elements including titanium, vanadium, chromium and nickel (Table 8) indicative of their mafic nature. They contain lower than expected cerium and lanthanum values based on their REE pattern (Figure 8).

MP2 and MP3 granites/granodiorites

The samples from drillholes NDIWMP02 and NDIWMP03 further southeast in the LLKB are defined by enrichment in incompatible elements and 'spikier' nature of trace element pattern (Figure 8). They show the classic signature for an evolved formation history with Rb, Th, Ba and U all more than 90x more concentrated than primitive mantle values, while Pb is more than 300x more concentrated (Figure 8). They contain moderate europium anomalies, with the MP2 granites values being larger (0.48 and 0.53) than MP3 (0.61 and 0.58). They contain very similar but large niobium anomalies of 0.14 in the case of MP2 samples and 0.13 and 0.14 for MP3 samples. They preserve much larger LREE slopes (between 3.62 and 4.43) than HREE slopes (between 1.57 and 1.76) (Table 7). Although they are remarkably similar, the MP2 and MP3 suites contain some subtle differences. Firstly, while their trace element plots are almost identical, the MP2 samples are significantly depleted in some compatible elements (P, Ti and Sr) (Figure 8) and though they contain a similar HREE slope and trend, the MP2 samples appear more enriched in HREE elements than MP3 samples (Figure 8).



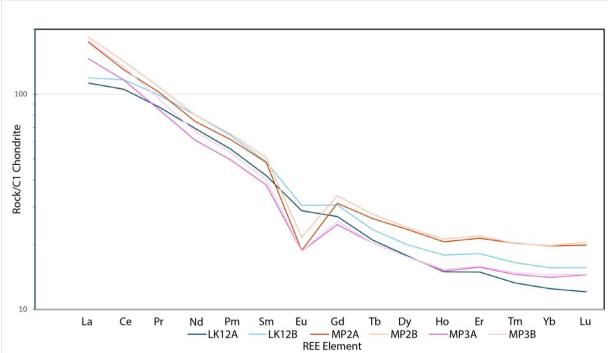



Figure 8: TOP- Spiderplot of trace element concentrations of igneous samples from LLKB normalised to primitive mantle values (Sun & McDonough, 1995). BOTTOM- Spiderplot of REE element concentration in igneous samples from LLKB normalised to C1 chondrite values (Anders & Grevesse, 1989). Both are plotted on a log scale.

# SM-ND TIMS ANALYSIS OF IGNEOUS SAMPLES

The six samples above were analysed using TIMS to determine Sm-Nd isotopic ratios.

Values obtained are presented below (Table 9):

Table 9: Table of values calculated from Sm-Nd isotope analysis using MASS facilities at University of Adelaide. Note that input ages may reflect alteration events and so Sm-Nd values aren't representative of the source rock.

| Sample name                 | MP2A    | MP2B    | MP3A    | MP3B    | LK12A   | LK12B   |
|-----------------------------|---------|---------|---------|---------|---------|---------|
|                             |         |         |         |         |         |         |
| input age<br>of rock T (Ma) | 490     | 490     | 484     | 509.5   | 426     | 426     |
| Unmixed 143/144Nd           | .511923 | .511909 | .511849 | .511847 | .512379 | .512276 |
| Nd ugg <sup>-1</sup>        | 35.6    | 35.4    | 27.5    | 29.6    | 31.1    | 37.2    |
| Sm ugg <sup>-1</sup>        | 6.8     | 7.0     | 5.1     | 5.2     | 5.7     | 6.7     |
| 147Sm/144Nd                 | .1159   | .1190   | .1127   | .1066   | .1110   | .1096   |
| εNd (T=0)                   | -13.95  | -14.22  | -15.39  | -15.43  | -5.06   | -7.05   |
| 143Nd/144Nd (T)             | .511536 | .511909 | .511849 | .511847 | .512379 | .512276 |
| εNd (T)                     | -8.70   | -14.22  | -15.39  | -15.43  | -5.06   | -7.05   |
| TDM (Ma)                    | 1890    | 1974    | 1942    | 1836    | 1136    | 1268    |
| TCHUR (Ma)                  | 1348    | 1429    | 1432    | 1338    | 463     | 634     |
| DM at age of rock (T)       | .512434 | .513150 | .513150 | .513150 | .513150 | .513150 |
| CHUR at age of rock (T)     | .511982 | .512638 | .512638 | .512638 | .512638 | .512638 |

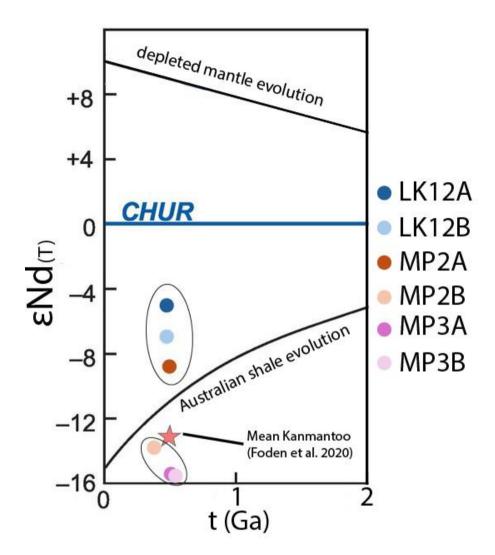



Figure 9: Scatterplot showing the obtained  $\epsilon Nd$  (T) values from TIMS analysis of Sm & Nd isotopes (Y-axis) against time (Ga) (X-axis) of samples obtained using TIMS Sm-Nd analysis. Red star depicts mean Kanmantoo  $\epsilon Nd$ (T) from Foden et al. (2020). Depleted mantle evolution line, Chondritic Uniform reservoir (CHUR) line and Australian shale  $\epsilon Nd$ (T) evolution values from Rollinson & Pease (2021) plotted. After Rollinson & Pease (2021).

The samples analysed returned values in two regions denoted by the ovals seen in Figure 9. Samples LK12A and LK12B yielded  $\varepsilon$ Nd(t) values of -5.06 and -7.05, respectively, while MP3A and MP3B obtained more evolved values (-15.39 and -15.43). Interestingly, MP2A and MP2B recorded more disparate values, with MP2A significantly less evolved ( $\varepsilon$ Nd(t) = -8.7) than MP2B ( $\varepsilon$ Nd(t) = -14.22) (Figure 9).

# Geochronology

#### RB-SR AGES OF SPOT ANALYSED SHALES AND INTRUSIONS

The Rb–Sr radiogenic system was used to analyse shales for their minimum age of deposition by targeting illite, while igneous intrusions targeted micas to deduce a crystallisation age. A total of nine samples were analysed (5 shales and 4 intrusions). Sample descriptions are available in Appendix 2.

All intrusions analysed were fine-grained or altered making targeting micas a challenge. Samples equivalent to those analysed in geochemistry and thin section were selected with MP02-556 and MP02-628 equivalent to MP2A and MP2B, respectively and MP03-493 and MP03-548 equating to MP3A and MP3B. Results for all igneous samples analysed are available (Table 10, Figure 10).

A total of 59 spots were analysed from sample MP03-548 yielding an age of  $510 \pm 12$  Ma ( $2\sigma$ ) with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7094 (Figure 10).

Sample MP02-628 returned an age of  $389 \pm 99$  Ma  $(2\sigma)$  with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7157, the large error reflects a limited spread in  $^{87}Rb/^{86}Sr$  (Figure 10).

Of the 5 shales, sample LK11-323 yielded the youngest age, at  $533 \pm 39$  Ma  $(2\sigma)$  with an  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7137. A total of 56 spots were analysed (Figure 11). All other shale samples analysed returned ages between  $549 \pm 24$  Ma and  $616 \pm 55$  Ma. All ages were within uncertainty of each other (Figure 11). All samples had similar  $^{87}Sr/^{86}Sr_{(i)}$ , between 0.7100 and 0.7168 (Table 10, Figure 11).

Table 10: Summary of Rb-Sr ages and associated errors ( $2\sigma$  quoted).

| Sample ID | Sample<br>Type | Depth<br>(m) | Initial<br><sup>87</sup> Sr/ <sup>86</sup> S6 | +/-    | Age<br>(Ma) | Analysed age<br>uncertainty (Ma) | MSWD | Total age<br>uncertainty<br>(Ma) |
|-----------|----------------|--------------|-----------------------------------------------|--------|-------------|----------------------------------|------|----------------------------------|
| LK11-323  | Shale          | 323          | 0.7137                                        | 0.0022 | 533         | 38                               | 0.77 | 39                               |
| LK11-369  | Shale          | 369          | 0.714                                         | 0.002  | 550         | 36                               | 1.2  | 38                               |
| LK12-186  | Shale          | 186          | 0.7168                                        | 0.0094 | 616         | 54                               | 1.4  | 55                               |
| LK14-361  | Shale          | 361          | 0.7104                                        | 0.0048 | 549         | 21                               | 1    | 24                               |
| LK14-379  | Shale          | 379          | 0.71                                          | 0.01   | 591         | 50                               | 0.84 | 51                               |
| MP02-556  | Granite        | 556          | 0.7138                                        | 0.0024 | 435         | 53                               | 1.1  | 56                               |
| MP02-628  | Granite        | 628          | 0.7157                                        | 0.0012 | 389         | 97                               | 0.88 | 99                               |
| MP03-493  | Granodiorite   | 493          | 0.7129                                        | 0.0019 | 484         | 16                               | 1.1  | 20                               |
| MP03-548  | Granodiorite   | 548          | 0.7094                                        | 0.0035 | 510         | 6.3                              | 3    | 12                               |

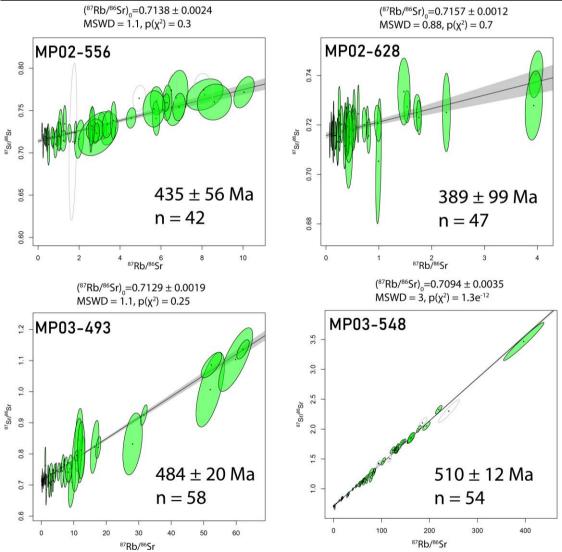



Figure 10: Isochrons from analysed intrusion samples with ages and intial  $^{87}Sr/^{86}Sr$  values along with associated propagated  $2\sigma$  errors and mean square weighted deviation (MSWD). Sample name equates to drill hole and depth in hole. Age uncertainty is quoted as total age uncertainty.




Figure 11: Isochrons from analysed shale samples with ages, intial <sup>87</sup>Sr/<sup>86</sup>Sr values along with associated errors and mean square weighted deviation (MSWD). The uncoloured circles indicate removed analysis points. Sample name equates to drill hole and depth in hole. Age uncertainty is quoted as total age uncertainty.

#### LA-ICP-MS RB-SR AGES OF RASTER ANALYSED ALTERATION TEXTURES

Seven samples were analysed over two separate sessions. Imaging capabilities of Iolite4 (Petrus et al., 2017; Paton et al., 2010) were used to deduce different alteration regions. Sample descriptions are available in Appendix 2.

Samples from drill hole ID NDILLK12, NDIWMP02 and NDIWMP03 were analysed. Each sample will be discussed individually as samples have multiple phases. The four other samples analysed utilising Rb–Sr geochronology not discussed here are available in Appendices 9 through 12 but are presented in Table 11 along with the samples below.

# Sample MP03-493

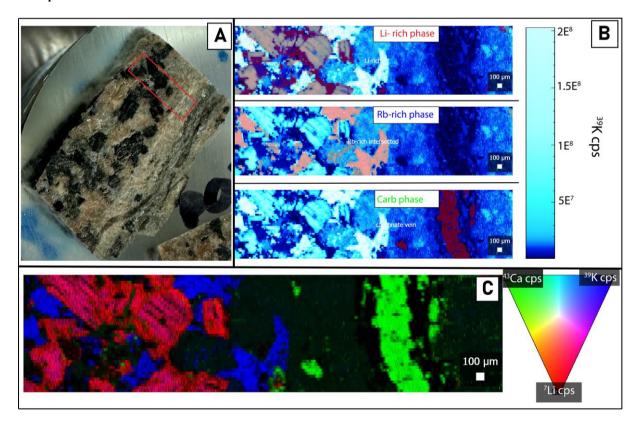



Figure 12: A) Sample MP03-493 mounted in epoxy with the red box depicting the mapped region; B) The three distinct pixel maps for phases (Li-rich, Rb-rich & Carb rich) present in sample MP03-493 (red regions) overlain on <sup>39</sup>K concentration map (left) and <sup>39K</sup> scale (right); C) The three distinct phases in B compiled into one ternary diagram showing their respective spatial relationships to each other.

LA-ICP-MS analysis of this sample yielded three distinct mineral phases (Figure 12B). There is a Li, Ti-rich phase that dominates the left portion of the analysed map (Figure 12; C). These are the largest minerals in the sample, up to 300µm in diameter. There is a finer grained Rb, K-rich phase that seems to dominantly fill space between the Li, Ti phases. A third, Ca-rich phase exists, filling the entire right portion of the map (Figure 12; C). This phase will not be discussed further here as it is a carbonate and therefore unsuitable for Rb–Sr geochronology. All phases have been overlaid on a <sup>39</sup>K map for consistency. Maps for all analysed elements are available in Appendix 6.

The Li, Ti-rich phase (MP03-493-Li) was the oldest phase, returning an age of  $505 \pm 10$  Ma ( $2\sigma$  error) with  $^{87}\text{Sr}/^{86}\text{Sr}_{(i)}$  of 0.7105 (n=99) (Figure 13). The Rb-rich phase (MP03-493-Rb) was younger, returning an age of  $403 \pm 13$  Ma ( $2\sigma$  error) with  $^{87}\text{Sr}/^{86}\text{Sr}_{(i)}$  of 0.7130 (n=99) (Figure 13).

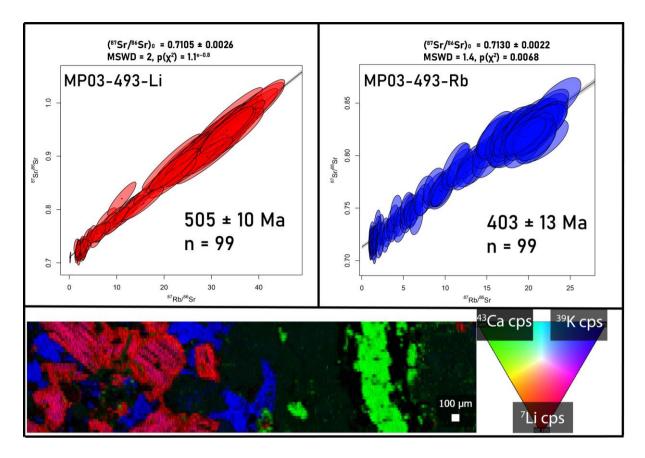



Figure 13: (TOP) Isochrons for phase MP03-493-Li (Left) and MP03-493-Rb (Right) with ages and  $^{87}Sr/^{86}Sr_{(i)}$  along with associated  $2\sigma$  errors and mean square weighted deviation (MSWD). (BOTTOM) ternary map of the pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.

# Sample LK-172

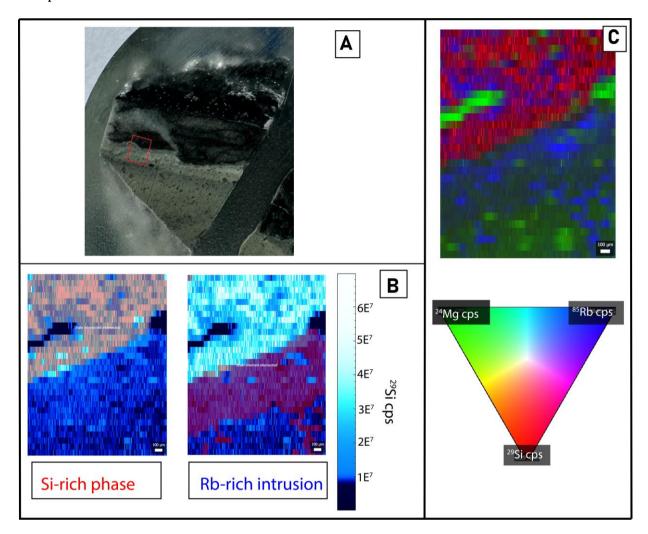



Figure 14: A) Sample LK-172 mounted in epoxy with the red box depicting the mapped region; B) Two distinct pixel maps for phases (Si-rich & Rb-rich) present in sample LK-172 (red regions) overlain on  $^{29}$ Si concentration map (left) and  $^{29}$ Si scale (right); C) The two distinct phases in B compiled into one ternary diagram showing their respective spatial relationships to each other.

LA-ICP-MS analysis of this sample yielded two distinct domains, visible in Figure 14C and the MLA map for this sample (Figure 5). They show a sediment (top) and fine-grained dyke (bottom) contact. There is a third phase away from the contact, dominated by Mg and Fe, however Rb concentrations are negligible. All phases have been overlaid on an <sup>29</sup>Si map for consistency. Maps for all analysed elements are available in Appendix 7.

The Rb-rich contact (LK-172-Rb) yielded an age of  $426 \pm 78$  Ma ( $2\sigma$  error) with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7169 (n=77) (Figure 15) while the Si-rich shale phase (LK-172-Si) yielded an age of  $502 \pm 51$  Ma ( $2\sigma$  error), with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7127 (n=77) (Figure 15).

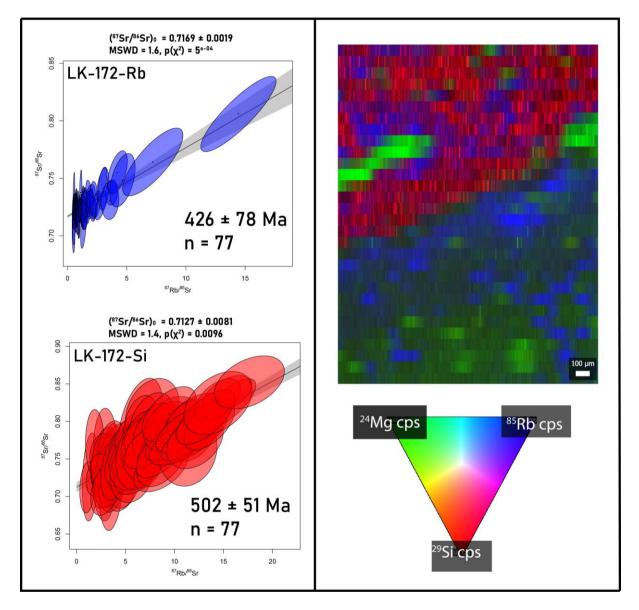



Figure 15: (LEFT) Isochrons for phase LK-172-Rb (top) and LK-172-Si (bottom) with ages and initial  $^{87}$ Sr/ $^{86}$ Sr along with associated  $2\sigma$  errors and mean square weighted deviation (MSWD). (RIGHT) ternary map of their pixel regions that each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.

# Sample MP02-583

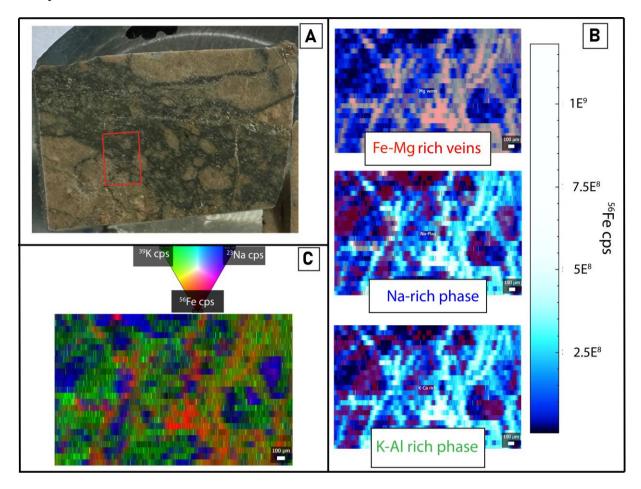



Figure 16: A) Sample MP02-583 mounted in epoxy with the red box depicting the mapped region; B) Three distinct pixel maps for phases (Fe-Mg rich veins, Na-rich phase and K-Al Rich phase) present in sample MP02-583 (red regions) overlain on <sup>56</sup>Fe concentration map (left) and <sup>56</sup>Fe scale (right); C) The three distinct phases in B compiled into one ternary diagram showing their respective spatial relationships to each other.

LA-ICP-MS analysis of this sample yielded three distinct domains. The most prevalent in elemental maps is the Fe, Mg-rich phase, appearing as a 'web' across the analysed map (Figure 16; B). Two other phases exist which appear to be closely related. The K, Al-rich phase tends to exist as a 'halo' separating the Mg phase from the Na-rich phase (Figure 16; B). All phases have been overlain on <sup>56</sup>Fe concentration map. Maps for all analysed elements are available in Appendix 8.

The Fe rich phase (MP02-583-Fe) yielded a minimum age of  $368 \pm 29$  Ma ( $2\sigma$  error) with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7173 (n=99) (Figure 17). The Na-rich phase (MP02-583-Na) yielded an age of  $332 \pm 29$  Ma ( $2\sigma$  error) with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7149 (n=72) (Figure 17). The K-Al rich phase (MP02-583-K) yielded an age of  $300 \pm 50$  Ma ( $2\sigma$  error) with  $^{87}Sr/^{86}Sr_{(i)}$  of 0.7310 (n=99) (Figure 17).

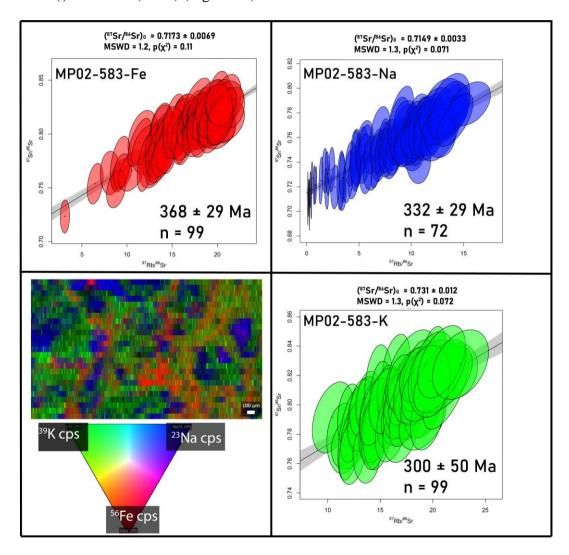



Figure 17: Isochrons for phase MP02-583-Fe (top left), MP02-583-Na (top right) and MP02-583-K (bottom right) with ages and initial  $^{87}$ Sr/ $^{86}$ Sr along with associated  $2\sigma$  errors ( $2\sigma$  quoted) and mean square weighted deviation (MSWD) and (bottom left) ternary map of their pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.

Table 11: Summary of LA-ICP-MS Rb-Sr elemental mapping ages and associated errors along with major elements associated with phases. Analyses in red will not be discussed further as they did not return sufficient radiogenic Rb spread for dating. Dominant elements labelled as per periodic table abbreviation.

| Sample ID | Phase ID    | Dominant elements                     | Initial <sup>87</sup> Sr/ <sup>86</sup> Sr | +/- (2σ) | Age | +/- (2σ) | MSWD |
|-----------|-------------|---------------------------------------|--------------------------------------------|----------|-----|----------|------|
| MP03-493  | MP03-493-Li | Li, Mg, Fe, Rb, K, Zr                 | 0.7105                                     | 0.0026   | 505 | 10       | 2    |
| MP03-493  | MP03-493-Rb | K, Si, Rb                             | 0.7130                                     | 0.0022   | 403 | 13       | 1.4  |
| LK-172    | LK-172-Rb   | Li, Na, Mg, Al, P, Ti, Fe             | 0.7169                                     | 0.0019   | 426 | 78       | 1.6  |
| LK-172    | LK-172-Si   | Si, Th                                | 0.7127                                     | 0.0081   | 502 | 51       | 1.4  |
| MP02-583  | MP02-583-Fe | Fe, Mg, Li, Ti                        | 0.7173                                     | 0.0069   | 368 | 29       | 1.2  |
| MP02-583  | MP02-583-Na | Na, Si                                | 0.7149                                     | 0.0033   | 332 | 29       | 1.3  |
| MP02-583  | MP02-583-K  | K, Si, Rb, Ca                         | 0.731                                      | 0.012    | 300 | 50       | 1.3  |
| MP02-556  | MP02-556-Si | Si, K, Na, Rb, Eu, Th                 | 0.7160                                     | 0.0015   | 334 | 14       | 0.99 |
| MP02-556  | MP02-556-Fe | Li, Mg, Al, Fe                        | 0.7096                                     | 0.0046   | 503 | 611      | 1.3  |
| LK12-173  | LK-173-Si   | Si. K, Th                             | 0.7084                                     | 0.0073   | 638 | 35       | 1.2  |
| LK12-173  | LK-173-Li   | Li, Na, Mg, Al, P, Ti, Fe, Y, Zr      | 0.7137                                     | 0.0018   | 493 | 92       | 1.2  |
| MP03-546  | MP03-546-K  | K, Al, Rb, Sr                         | 0.7086                                     | 0.0019   | 621 | 533      | 1.6  |
| MP03-546  | MP03-546-Rb | Rb, K                                 | 0.749                                      | 0.024    | 212 | 106      | 1    |
| MP02-579  | MP02-579-Na | Na, K, Rb                             | 0.7137                                     | 0.0042   | 358 | 33       | 1.2  |
| MP02-579  | MP02-579-Mg | Fe, Li, Mg, Ca, Ti, Fe, Sr, Y, Ce, Eu | 0.7092                                     | 0.052    | 387 | 115      | 0.98 |

LA-ICP-MS U-PB AGES OF RASTER ANALYSED CARBONATE BEDS AND VEINS

Analysis of carbonates present in samples analysed through this method revealed all
carbonates contained uranium concentrations lower than 100ppm with the majority
containing less than 20ppm. There was also obvious hallmarks of Pb loss as all analysed
raster maps returned ages younger than 80 Ma with flat concordia lines (Vervoort, 2018;
Rasbury & Cole, 2009). As such, the results of this method will not be further discussed.

#### DISCUSSION

# The rift, drift and end of a passive margin on the Tasman Line.

Recent full-plate tectonic reconstructions suggest that prior to its positioning on the eastern edge of the Gondwanan continent next to Antarctica, cratonic Australia was a land-locked region of the supercontinent Rodinia (Merdith et al., 2019; 2021; Cao et al., 2024). Some authors suggest that south China (Li et al., 1995; 2023) and/or Tarim (Wen et al., 2017) lay to its east (present coordinates). These reconstructions were demonstrated to be hard to reconcile with Phanerozoic-like plate tectonics by Merdith et al. (2017b), suggesting that earlier models of a tight fit between Australia and Laurentia are more plausible (Figure 18A) (Merdith et al., 2019; 2021; Cao et al., 2024). It is believed that a superplume beneath this portion of Rodinia lead to Australia's eastern margin (the Tasman Line) rifting from North America during the formation of the proto-Pacific Ocean *ca.* 750 Ma (Merdith et al., 2021) (Figure 18B). The rift led to the formation of the continental slope in which the Pualco Tillite and Braemer Ironstone Formations (Mole et al., 2024) were deposited in the LLKB (Figure 18C). These formations underlie the analysed shales in this project.

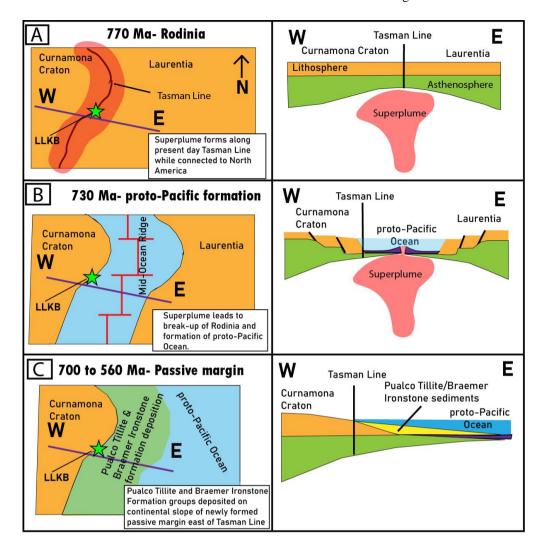



Figure 18: An overview of the evolution of the LLKB region from; (A) the initiation of rifting in Rodinia and (B) subsequent drift from Laurentia to form Gondwana to (C) the deposition of sediments associated with the passive margin prior to subduction initiation (Pualco Tillite and Braemer Ironstone Formation) on the margin. Left image is overhead view and right is a cartoon cross-section from W through E along purple line. The green star represents the westernmost point of the LLKB.

#### Back-arc sedimentation in the LLKB

Rb–Sr geochronological analysis of the shale samples within the Torrawangee and Dinggali formations fit within the window between Rodinia break-up and the initiation of the Delamerian Orogeny ( $ca.\,514$  Ma), returning an oldest age of  $616\pm55$  Ma (LK12-186) and youngest of  $533\pm39$  Ma (LK11-323) (Figure 11). Due to the significant detrital proportions within the shales, there is some uncertainty if these are detritus ages or shale formation ages. This leads to two potential hypotheses. Firstly, these ages could record authigenic ages of illite formation in-situ and suggest that their formation pre-dates the Delamerian Orogeny,

indicating these sediments formed on a static passive margin within the LLKB with no backarc sedimentation. This seems unlikely as it differs significantly from the proximal AFB Kanmantoo sequences in the South Australian portion of the Delamerian Orogen. Foden et al. (2020) interprets the Kanmantoo sequence to be rapidly deposited sedimentary rocks formed in a deepening basin behind the Stavely arc associated with subduction rollback and terminating at ca. 490 Ma, significantly younger than our interpreted ages. Consequently, a more likely explanation is favoured here. The high Sr(i) values of greater than 0.71 (Table 10) and the morphology of the shales themselves being quite heterogenous and containing significant proportions of silt-sized grains (Appendix 2), indicates the analysed ages are likely detrital. Therefore, they should be viewed as maximum depositional ages, dating the original sediment prior to its erosion and re-deposition on the LLKB passive margin. This hypothesis gains traction when discussing the isochron of the oldest sample (LK12-186) (Figure 11). The spots analysed return a wide range of Rb-Sr ratios (evidenced by the removal of 17 spots to make a coherent isochron) (Appendix 15), reflecting this heterogenous source of detritus in the sample. This spread may reflect a mixed source in the sample, detrital grains from a Neoproterozoic source with some Ediacaran-Cambrian aged grains. This would explain why an isochron and therefore valid age was hard to define for this sample.

The remaining shale analyses (Figure 11) return more coherent isochrons and ages within error of each other *ca.* 572–540 Ma (Figure 11). If we take the same approach, that they depict detrital ages, we can see they compare favourably to the detrital zircon record for Kanmantoo sediments. There is an abrupt change at the base of the Kanmantoo group in the provenance of zircons from Mesoproterozoic aged to a dominantly Cambrian–Ediacaran population of ages ranging from 600–500 Ma (Haines et al., 2009; Brotodewo et al., 2021;

Ireland et al., 1998). A potential source is the Ross Orogen along the Antarctic Gondwanan margin, containing a newly formed volcanic complex *ca.* 560 Ma (Boger & Miller, 2004).

The findings of this paper indicate the Torrawangee and Dinggali formations north-west of the Lake Wintlow Belt (hereafter referred to as LWB) in the LLKB are likely Kanmantoo equivalents. Therefore, they were deposited in a deepening basin as subduction initiated along the margin. These sediments likely initially formed co-eval with the hypothesised newly forming volcanic arc (LWB) and then continued being deposited in the back-arc to the west as the subduction zone rolled back to the east (Figure 19) prior to the collision of VanDieland with the margin (Huston et al., 2015; Gray et al., 2024). Detrital zircon SHRIMP U–Pb analysis of zircons within these samples should be undertaken to gain more robust ages, adding further weight to this hypothesis.

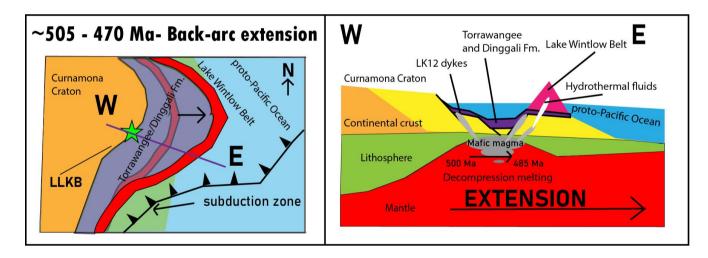



Figure 19: A cartoon cross-section of back-arc sedimentation of the Torrawangee and Dinggali Formations in the back-arc behind the Lake Wintlow Belt during extension in the LLKB. The red linear shapes in the left image depict the initial Lake Wintlow belt location and its evolution from 505 Ma to 470 Ma. The left image is an overhead view and right is a cartoon cross-section from W through E along the purple line. The green star represents the westernmost point of the LLKB.

#### An arc in the Loch Lilly-Kars Belt

Rb–Sr spot and map analyses of igneous samples suggest that the Stavely Arc and Mt Wright Volcanic belt, interpreted by Foden et al. (2020) and Crawford et al. (1997), as the volcanic

arc associated with the onset of subduction along the Gondwana margin, were indeed connected as one system through the LLKB region (Figure 20). Spot analysis of plutonic sample MP03-548 yielded an age of  $510 \pm 12$  Ma (Figure 10) while map analysis of the MP03-493-Li phase returned an age of  $505 \pm 10$  Ma (Figure 13). These both come from drillhole NDIWMP03 within the LWB and the ages fit comfortably within error of published values for S-type granites found within the Stavely Arc and Mount Wright volcanic sequences at 515-505 Ma (Foden et al., 2020). Furthermore, the geochemical analyses of these samples (MP3A and MP3B) contain the hallmarks of S-type suites with significant enrichment in incompatible elements Rb, Th and U, along with large LREE slopes (Figure 8) and significant Eu/Eu\* (0.61 and 0.58) (Table 7). Ce and Ba are also enriched, likely due to their elevated concentration in seawater which imparts its signature in arc intrusions during its release into the mantle wedge through the process of retrograde metamorphism during subduction (Villaros et al., 2009). It is suggested that, while the MP02 samples do not return an equivalent age, due to their proximity, they were initially intruded in the same arc setting. This hypothesis is validated by their similar enrichment in incompatible elements (Figure 8) and Eu/Eu\* anomaly values (0.48 and 0.53) (Table 7). Recent ages reported by GA support this hypothesis with granodiorites taken from the same hole (NDIWMP02) returning U-Pb SHRIMP zircon ages ranging from 510 to 500 Ma (Mole et al., 2024). These findings indicate the volcanic arc sat in the LWB region from 510 to 500 Ma (Figure 20). We propose that subsequent hydrothermal activity, in a manner similar to that reported by Hong et al. (2023) from the Anabama region along strike to the west has led to their alteration and younger analysed ages, which will be expanded upon later.

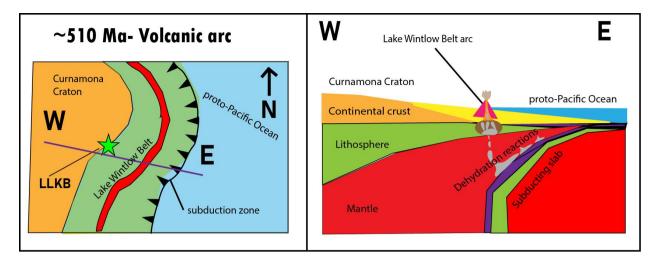



Figure 20: An overview of the LLKB region during the formation of the Lake Wintlow Belt arc and its placement on top of the Torrawangee and Dinggali Formations after subduction of the proto-Pacific Ocean initiated along the Gondwanan eastern margin. The left image is an overhead view and the right is a cartoon cross-section from W through E along purple line. The green star represents the westernmost point of the LLKB.

Evidence for these ca. 500 Ma intrusions has been missed in previous work because the LLKB has a significant post-formation tectonic history leading to extensive alteration. There is evidence within all igneous samples in this project, including the prevalent hematite staining of quartz in samples MP3A and MP3B, extensive late carbonate veining in our LK mafic dykes and complete recrystallisation of some arc protoliths seen in sample MP2A (Figure 4). The new mapping technique for Rb/Sr systems used here allows separate phases to be isolated and dated independently in the one sample and is key to finding the phases which are robust enough to maintain their chemistry throughout later events. A prime example being the Li-rich mineral phase within sample MP03-493, which returns the age of the arc intrusion (505  $\pm$  10 Ma) while the finer-grained Rb-rich infill does not (403  $\pm$  13 Ma) (Figure 13).

The tectonic setting of this arc in the LLKB region is interpreted to be continental and not oceanic due to the negative  $\varepsilon Nd(t)$  values of the arc-related granites which become more negative with increasing assimilation of crustal material in the melt (Stevenson et al., 1999).




Figure 21: LEFT- Scatterplot of  $\epsilon Nd_{(T)}$  vs  $^{147}Sm/^{144}Nd$  of igneous samples analysed in this project (red circles) along with S-type granites, Cambrian mafic volcanics and Kanmantoo sedimentary rocks from The Delamerian Orogen (Foden et al., 2020) along with evolution lines of these samples based on specific assimilation fractional crystallisation (AFC) values. RIGHT- Spiderplot depicting the change in concentration of trace elements in igneous samples found in the AFB (Foden et al., 2020) compared to N-MORB values depending on the percentage of assimilated Kanmantoo sedimentary rocks in the melt and their equivalent  $\epsilon Nd$  (t) values. After Foden et al. (2020).

If we consider the Kanmantoo Group of the AFB a proxy for possible sediment assimilation in the magma (Foden et al., 2020) due to their similar provenance and regional proximity to the LLKB sedimentary rocks as discussed above, it is viable to model the MP S-type granite chemistry. The highly evolved  $\varepsilon$ Nd(t) values of the MP samples suggest they assimilated considerable proportions of sediment deposited in the deepening basin associated with subduction onset. This assimilation of Kanmantoo Group equivalents would lead to increasing concentrations of elements such as Cs, Rb, Ba, Th and Pb as seen in S-type intrusives in the AFB (Foden et al., 2020) (Figure 21). The MP2 and MP3 granites and granodiorites are defined by significant enrichment in these elements (Figure 8).

1.7 (Whalen et al., 2003). In contrast, the early LLKB arc granite samples analysed here plot with a chemistry much closer to mean Kanmantoo sediment values than 'oceanic' S-type granites at a more evolved value (greater than -13 ɛNd(t)) (Figure 21). This suggests an assimilation fractional crystallisation value for the arc of greater than 0.58 and indicates the largest impact on their geochemical signature is assimilation and not fractional crystallisation. These findings clearly indicate the arc in the LLKB was formed on continental crust initially, a view favoured in previous work (Cayley, 2011; Greenfield et al., 2011) (Figure 20).

#### From arc to back-arc

The proto-Pacific subduction zone has been characterised by an eastward migration of the trench and short pulses of orogenesis as microcontinents that rifted off during the breakup of Rodinia collided with the margin (Glen & Cooper, 2021; Huston et al., 2015; Moresi, 2014). During rollback, the region on the upper plate in extension moves in the same direction as roll-back over time, resulting in regions that were initially part of the arc moving into the back-arc and extending. A present-day example of this phenomenon is the Taupo Volcanic Zone in New Zealand where there is evidence for prior arc magma emplacement in regions where current extensional collapse and high geothermal gradients are occurring due to slab retreat (Harrison & White, 2006). We propose a similar process occurring in the LLKB on the proto-Pacific margin. Previous work by Hong et al. (2024) suggested a second phase of igneous activity, occurring immediately after the Delamerian Orogeny at ca. 490 Ma. The results of this paper further support this hypothesis with spot analyses of samples MP03-493 (MP3A) and MP02-556 (MP2A) returning ages of  $484 \pm 20$  Ma and  $435 \pm 56$  Ma, respectively (Figure 10). Both samples contain evidence for pervasive albitic alteration, particularly MP2A. This is based on thin section analysis of this sample, where coarse relict plagioclase and hornblende (Figure 4) indicate its original composition was that of a

granodiorite with similar composition to MP3B (Table 6). This altered sample plots with a much less evolved  $\varepsilon Nd(t)$  (-8.7) than the other granite samples in the LWB and returns this younger age. We argue that the low reset temperature of the Rb/Sr system due to hydrothermal fluids at as low as 120°C (Subarkah et al., 2022) means that the resulting age dates recrystallisation due to alteration (ca. 484 Ma) and not the formation age of the arcprotoliths discussed above. These fluids could have remobilised the incompatible REEs and led to the fluid-assisted recrystallisation of these samples with an influx of Nd leading to a more juvenile  $\varepsilon Nd(t)$  signature. Supporting this hypothesis is the higher concentration of HREE elements in our MP2A and MP2B samples when compared to MP3 samples (Figure 8). We propose this more juvenile fluid source brought more HREEs into the system and explains this discrepancy between the two suites. Therefore, the εNd(t) being less evolved at this younger age suggests the fluids appear to be sourced, at least in part, from a more juvenile magma than the initial arc magmas prior to ca. 500 Ma (Figure 19). We propose that when the Stavely region of the Delamerian was closing due to the collision of VanDieland from the south-west leading to the cessation of Kanmantoo deposition ca. 490 Ma (Foden et al., 2020), the LLKB region to the north was rolling back rapidly, similar to that proposed by Moresi et al. (2014). This lead to the oroclinal bend preserved in the Delamerian Orogen today. This extension facilitated decompression melting in the LLKB and led to the formation of the Tarrara-Menindee Trough as a basin formed behind the retreating arc. This structure is seen today as the low gravity, high magnetic corridor directly north-west of the LWB (Figure 22). Further analysis of the Tarrara-Menindee Trough sedimentary rocks to the south of drillhole NDILLK14 should be undertaken attempting to intercept shales younger than 490 Ma to confirm the theory as recent drilling in 2023 did not intercept shales within this structural corridor.

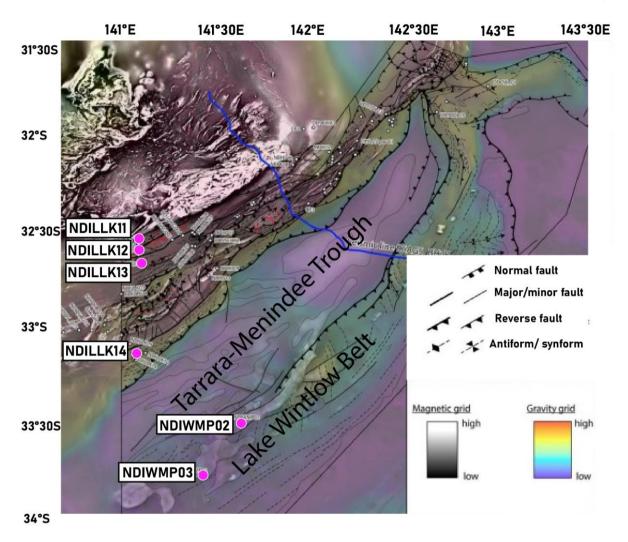



Figure 22: Linework of solid geology map of Loch Lilly-Kars and Lake Wintlow Belts, New South Wales. The drillholes used in this project are highlighted as pink dots. Background is a coloured semitransparent Bouger gravity anomaly grid (Lane et al., 2019) above greyscale 0.5 vertical derivative of aeromagnetic data reduced to the pole (Poudjom Djomani et al., 2019). Blue line is seismic line 96AGS\_BH1B from Korsch et al. (2006). After (Clark et al., 2024).

### The mafic olivine basalt dykes of LLKB

It is interpreted that the extension discussed above, is also responsible for the olivine basalt dykes, samples LK12A and LK12B present in drillhole NDILLK12. These dykes are dominated by compatible elements including Mg, Ti, Co and Ni (Table 8). The last two of these of particular note being at least 10x more concentrated than our LWB diorites of S-type character (Table 8). While it could be argued that their increased concentrations at up to 80x C1 values (Figure 8) of incompatible elements like Pb and U suggests an S-type character, it is important to note that this region has just undergone subduction initiation, likely resulting

in the underplating of subduction influenced magmas to the mantle here. We argue that the remelting of these from decompression and mixing with the juvenile source would impart that 'S-type' signature on these back-arc intrusions.

The dykes have trace element profiles closer to C1 chondrite values than those of the LWB rocks (Figure 8), and smaller europium anomalies (0.86 and 0.8) (Table 7) indicating decreased magma fractionation at the time of crystallisation. Sm-Nd analysis also returned less evolved  $\varepsilon Nd(t)$  values of -7 and -5 (Table 9), suggesting that they did not form in the same setting as our interpreted arc suites. Due to their more mafic composition, they contain less Rb and as such do not return robust ages. This is further complicated by the presence of significant carbonate veining throughout (Figure 4; Appendix 3), which could have remobilised incompatible elements including Rb leading to its depletion, reflected by the high errors in their determined ages of  $426 \pm 78$  Ma (LK-172-Rb) (Figure 15) and  $493 \pm 92$  Ma (LK-173-Li) (Table 11; Appendix 10). They intrude Torrawangee Group rocks with ages younger than 560 Ma and so cannot be connected to the prior rifting of Laurentia. This same dyke was recently dated by GA using SHRIMP U-Pb zircon dating returning an age of 499 ± 5.8 Ma (Mole at al., 2024). This intrusion is likely driven by continuous decompression melting in the back-arc (Figure 19) during extension ca. 500 Ma and this back-arc system likely migrated eastward to sit in the LWB ca. 485 Ma (Fig. 19) as discussed above, evidenced by the eNd(t) values and Rb–Sr geochronology found in samples MP2B and MP03-493, respectively (Figure 9 and Figure 10). The movement of this back-arc system, linked directly to the eastward migration of the subduction zone is therefore the likely cause of the pervasive hydrothermal fluids responsible for the albitic alteration of hydrothermal breccia MP2A (Figure 4)). This extensional period is interpreted to conclude with the collision of the Macquarie Arc with the subduction zone (Moresi et al., 2014; Foden et al.,

2020) and subsequent jumping of the subduction zone eastward behind this newly accreted microcontinental block in the Ordovician. We propose this collisional event re-activated the normal fault south of drillhole NDILLK14 (Figure 22) into a thrust fault.

# Post active margin events in the Loch Lilly-Kars Belt

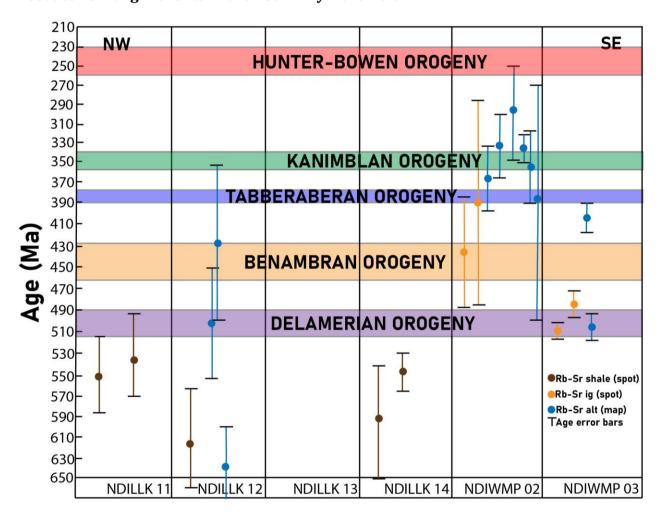



Figure 23: Time space plot showing the Rb–Sr ages and associated errors of analysed samples in this project sorted by their drill-hole location. Holes are plotted from most northwest (left) to most southeast (right). The estimated timing of orogenic events during Tasmanide formation have been taken from Foden et al. 2020 and plotted as coloured bars.

There is extensive evidence in the rocks of the LLKB that this region did not become inactive after the subduction zone jumped outboard of the Macquarie Arc in the Ordovician. The igneous suites present in the LWB are dominated by albitic alteration, brecciation and subsequent epidote + chlorite growth (Figure 4; Appendix 2). Most notably the samples from

drillhole NDIWMP02 (Appendix 2). Rb–Sr laser-map analysis has helped to separate these different events. There is evidence for hydrothermal fluid circulation post the Delamerian Orogeny until as young as 250 Ma, in sample MP02-583-K (Table 11). While the LLKB was no longer at the boundary of an active margin after 470 Ma, the Tasmanides continued their formation further east. The LLKB at this stage was still a new accretionary orogen on the boundary of cratonic Australia and the crustal scale faults in the region could very easily be re-activated by forces from the margin. We suggest here that these later alteration events occurred shortly after contractional events in the Tasmanides, when the extensional regime restarted, facilitating higher fluid flow along structural corridors and increased geothermal gradients in the LLKB. This hypothesis supports the findings from our U-Pb carbonate dating. The significant Pb-loss and low uranium concentrations indicate that these fluids were likely oxic in nature and active within the vast majority of the LLKB. Oxic fluids are efficient at stripping both uranium and lead from the rocks they permeate through (Cabral Pinto et al., 2018), leading to low uranium concentrations and U-Pb ages of younger than 100 Ma with horizontal concordia lines, both of which occur in all carbonate samples analysed. Ages obtained from Rb-Sr alteration mapping indicate numerous alteration periods, including a 420–390 Ma event, seen in MP03-493-Rb (Table 11) from drillhole NDIWMP03 (Figure 23), post-dating the Benambran Orogeny (460–430 Ma), but pre-dating the Tabberaberan Orogeny (390–380 Ma). This sample supports the hypothesis that extension is responsible for at least this alteration event. While the younger phases in NDIWMP02 return age errors to broad to determine if they occur during the orogenic or extensional events (Table 11; Figure 23), they do show clear evidence that hydrothermal activity continued regionally until the Hunter-Bowen Orogeny which initiated ca. 260 Ma.

#### **CONCLUSIONS**

- Rb-Sr spot analysis of igneous suites in the Lake Wintlow Belt indicate an active
  volcanic arc existed in the LLKB from ca. 510-500 Ma and is co-genetic with the
  Stavely Zone arc suites, implying it was continuous from the Stavely Zone to the
  Koonenberry Belt.
- Highly evolved εNd(t) values (down to -13) and trace element abundance patterns of these intrusions indicate the volcanic arc formed on continental crust and suggests the dominant control on their chemistry was assimilation of 'Kanmantoo-like' sediments as opposed to fractional crystallization.
- Olivine basalt dykes found in NDILLK12 north of the Tarrara-Menindee Trough may
  be the result of back-arc extension and melting of underplated igneous rocks ca. 500
  Ma before moving eastward to the Lake Wintlow Belt.
- Hydrothermal alteration of Lake Wintlow Belt arc protoliths by more juvenile
   hydrothermal fluids led to the reset of some Rb–Sr ages within arc suite samples ca.
   490–470 Ma and remobilized REE elements, in particular HREEs and is believed to
   have reset the Sm–Nd system of sample MP02-556.
- Rb—Sr dating of shales from north-west of the Lake Wintlow Belt indicate they are dominantly derived from Cambrian-Ediacaran sediments, likely sourced from the Ross Orogen *ca.* 560 Ma and equivalent to Kanmantoo group rocks of the AFB, indicating a period of back-arc sedimentation in the LLKB from its formation *ca.* 514 Ma.
- There is evidence of hydrothermal alteration by oxic fluids throughout the LLKB spanning from 500 Ma until 250 Ma, influenced by tectonic activity on the eastward migrating subduction system.

• The LLKB preserves evidence of a subduction orogenic tectonic system with an eastward migration, very similar to the Stavely/AFB region to its south.

#### **ACKNOWLEDGMENTS**

I am endlessly thankful for the unwavering support and patience of my supervising team of Alan Collins, Morgan Blades and Darwinaji Subarkah who have given me so much guidance and feedback along with Chris Lewis and the extended team at Geoscience Australia for access to the datasets and samples this project analysed. Thanks also to the MinEx CRC who drilled the samples and whose umbrella this project sits. Further thanks to the extended Tectonics and Earth Systems group for being so welcoming this year. Sarah Gilbert, Paul Olin and Nobuyuki Kawashima are thanked for their technical expertise during my analyses at Adelaide Microscopy while Simon Heinrich and Robert Klaebe must be thanked for their patience in the MASS labs along with Ricky Williams for the training received in the lapidary. I would also like to thank Peak Iron Mines and The Playford Trust for their financial support. Finally endless thanks to fellow honours students Isaac Pepe, Cooper Ferguson, Kate Wilson Jayden Squire, Nicko Wyndham & Ruoheng Li for the support and friendships that have grown throughout this year.

#### **REFERENCES**

- ABDULLAH, R. & ROSENBAUM, G. 2018. Devonian crustal stretching in the northern Tasmanides (Australia) and implications for oroclinal bending. Journal of Geophysical Research: Solid Earth 123, 7108-7125.
  - https://doi.org/10.1029/2018JB015724
- AN, Y., LI, S., ZHU, D., CAWOOD, P. A., WANG, Q., XIE, J., ZHANG, L. & ZHAO, Z. 2024. Compositional change from high-Mg to low-Mg magmatism at ca. 150 Ma in the central Lhasa terrane, Tibet: Switching from advancing to retreating subduction of the Bangong Tethyan slab. *The Geological Society of America* **136(1/2)**, 689-706. https://doi.org/10.1130/B36719.1
- ANDERS, E. & GREVESSE, N. 1989. Abundances of the elements: Meteoritic and solar. *Geochimica et Cosmochimica Acta* **53**, 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
- BAATAR, B., PARRA-AVILA, L.A., FIORENTINI, M. L., POLITO, P. & CRAWFORD, A.J. 2020. Porphyry Cu fertility of the Loch Lilly-Kars Belt, Western New South Wales, Australia. *Australian Journal of Earth Sciences* **67(1)**, 75-87. https://doi.org/10.1080/08120099.2019.1637937
- BAILEY, A., BASTRAKOV, E., CAIRNS, C., CAYLEY, R., DUNCAN, R., HUSTON, D., LEWIS, C., MCALPINE, S., SCHOFIELD, A., SKLADIZEN, P., TAYLOR, D. & THOMAS M. 2018. Regional geology and mineral systems of the Stavely Arc, western Victoria: Data release 5 Geochemistry data. A. Schofield, *GeoScience Australia*. http://dx.doi.org/10.11636/Record.2017.002
- BOGER, S. D. & MILLER, J. M. 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. *Earth and Planetary Science Letters* **219(1-2)**, 35-48. https://doi.org/10.1016/S0012-821X(03)00692-7
- BROTODEWO, A., WISE, T. & LLOYD, J. C. 2021. LA-ICP-MS detrital zircon geochronology from the Delamerian Orogen. *MinEx CRC Report 2021/69*.
- CABRAL PINTO, M. M. S., SILVA, M. M. V. G., NEIVA, A. M. R., GUIMARÃES, F & SILVA, P. B. 2018. Release, Migration, Sorption and (Re)Precipitation of U during Peraluminous Granite Alteration under Oxidizing Conditions in Central Portugal. *Geosciences* 8(3), 95. <a href="https://doi.org/10.3390/geosciences8030095">https://doi.org/10.3390/geosciences8030095</a>
- CAO, X., COLLINS, A. S., PISAREVSKY, S., FLAMENT, N., LI, S., HASTEROK, D. & MÜLLER, R. D. 2024. Earth's tectonic and plate boundary evolution over 1.8 billion years. *Geoscience Frontiers* **15(6)**, 101922. https://doi.org/10.1016/j.gsf.2024.101922
- CAWOOD, P. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. *Earth-Science Reviews* **69(3-4)**, 249-279. https://doi.org/10.1016/j.earscirev.2004.09.001
- CAWOOD, P. A., KRÖNER, A., COLLINS, W. J., KUSKY, T. M., MOONEY, W. D. & WINDLEY, B. F. 2009. Accretionary orogens through Earth history. *Geological Society, London, Special Publications* **318**, 1-36. https://doi.org/10.1144/SP318.1
- CAYLEY, R. A. 2011. Exotic crustal block accretion to the eastern Gondwanaland margin in the Late-Cambrian-Tasmania, the Selwyn Block, and implications for the Cambrian–Silurian evolution of Ross, Delamerian and Lachlan orogens. *Gondwana Research* **19**, 628-649. https://doi.org/10.1016/j.gr.2010.11.013
- CHAPMAN, J. B., SHEILDS, J. E., DUCEA, M. N., PATERSON, S. R., ATTIA, S. & ARDILL, K. E. 2021. The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. *Lithos* **398-399**. https://doi.org/10.1016/j.lithos.2021.106307
- CHEN, N., MAO, J., ZHANG, Z., DUAN, Z., SANTOS, A. & LI, H. 2023. Arc magmatic evolution and Porphyry copper deposit formation under compressional regime: A geochemical perspective From Toquepala arc in Southern Peru. *Earth-Science Reviews* **220**, 104383. <a href="https://doi.org/10.1016/j.earscirev.2023.104383">https://doi.org/10.1016/j.earscirev.2023.104383</a>
- CLARK, A. D., PITT, L., DOUBLIER, M. P., HIGHET, L., MOLE, D. R., TAYLOR, H., WISE, T., GILMORE, P. J., HARTNADY, M., KIRKLAND, C. L., BARELUVA, O., LEWIS, C. J., THOMAS, M., FOLKES, C., COLQUHOUN, G. P., CHENG, Y., ROACH, I. C. & BUDD, A. 2024. Basement

- geology of the Loch Lilly-Kars Belt, Lake Wintlow Belt and Wilcannia High. Accompanying notes. Geoscience Australia, Canberra.
- https://dx.doi.org/10.26186/149762
- CRAWFORD. A. J., STEVENS, B. & FANNING, M. 1997. Geochemistry and tectonic setting of some Neoproterozoic and early Cambrian volcanics in western New South Wales. *Australian Journal of Earth Sciences* **44(6)**, 831-852. https://doi.org/10.1080/08120099708728358
- CRAWFORD, A. J., COOKE, D. R. & FANNING, C. M. 2007. Geochemistry and age of magmatic rocks in the unexposed Narromine, Cowal and Fairholme Igneous Complexes in the Ordovician Macquarie Arc, New South Wales. *Australian Journal of Earth Sciences* **54(2-3)**, 243-271. https://doi.org/10.1080/08120090701221714
- DROST, K., CHEW, D., PETRUS, J. A., SCHOLZE, F., WOODHEAD, J. D., SCHNEIDER, J. W. & HARPER, D. A. T. 2018. An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate dating and Applications to Direct Dating of Carbonate Sedimentation. *Geochemistry, Geophysics, Geosystems* **19(12)**, 4631-4648. https://doi.org/10.1029/2018GC007850
- DUTCH, R. A. & HAND, M. 2009. Retention of the Sm-Nd isotopic ages in garnets subjected to high-grade thermal reworking: Implications for diffusion rates of major and rare earth elements and the Sm-Nd closure temperature in garnet. *Contributions to Mineralogy and Petrology* **159(1)**, 93-112 <a href="https://doi.org/10.1007/s00410-009-0418-1">https://doi.org/10.1007/s00410-009-0418-1</a>
- FLANAGAN, F.J. 1976. Description and analyses of eight new USGS rock standards. *USGS Professional Paper*. **840**, 1-192. https://doi.org/10.3133/pp840
- FODEN, J., ELBURG, M. A., DOUGHERTY-PAGE, J. & BURTT, A. 2006. The Timing and Duration Of the Delamerian Orogeny: Correlations with the Ross Orogen and Implications for Gondwana assembly. *The Journal of Geology* **114(2)**, 189-210. <a href="https://doi.org/10.1086/499570">https://doi.org/10.1086/499570</a>
- FODEN, J., ELBURG, M. A., TURNER, S., CLARK, C., BLADES, M. L., COX, G., COLLINS, A.S, WOLFF, K. & GEORGE, C. 2020. Cambro-Ordivician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin. *Gondwana Research*, **81**: 490-521. https://doi.org/10.1016/j.gr.2019.12.006
- FODEN, J., MAWBY, J., KELLEY, S., TURNER, S. & BRUCE, D. 1995. Metamorphic events in the eastern Arunta Inlier, Part 2. Nd-Sr-Ar isotopic constraints. *Precambrian Research* 71, 207-227. https://doi.org/10.1016/0301-9268(94)00062-V
- FOSTER, D. A. & GRAY, D.R. 2000. Evolution and Structure of the Lachlan Fold Belt (Orogen) of Eastern Australia. *Annual Review of Earth and Planetary Sciences* **28**, 47-80. <a href="https://doi.org/10.1146/annurev.earth.28.1.47">https://doi.org/10.1146/annurev.earth.28.1.47</a>
- GLEN, R. A. & COOPER R. A. 2021. Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian. *Earth-Science Reviews* 220 <a href="https://doi.org/10.1016/j.earscirev.2021.103687">https://doi.org/10.1016/j.earscirev.2021.103687</a>
- GLORIE, S., GILBERT, S.E., HAND, M. & LLOYD, J.C., 2024. Calibration methods for laser ablation Rb-Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials. *GChron* **6**, 21-36. https://doi.org/10.5194/gchron-6-21-2024
- GOROJOVSKY, L. & ALARD, O. 2020. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS. *Journal of Analytical Atomic Spectrometry* **35(10)**, 2322-2336. https://doi.org/10.1039/d0ja00308e
- GRAY, D. R. & FOSTER, D. A. 2004. Tectonic evolution of the Lachlan Orogen, southeast Australia: Historical review, data synthesis and modern perspectives. *Australian Journal of Earth Sciences* **51(6)**, 773-817. https://doi.org/10.1111/j.1400-0952.2004.01092.x
- GRAY, D. R., VICARY, M. J. & MCNEILL, A. W. 2024. The Tasmanian Tyennan Domain- a structural synthesis and review with tectonic and dynamic implications for continental margin subduction and exhumation. *Australian Journal of Earth Sciences* **71(2)**, 153-210. <a href="https://doi.org/10.1080/08120099.2023.2280604">https://doi.org/10.1080/08120099.2023.2280604</a>
- GREENFIELD, J. E., MUSGRAVE, R. J., BRUCE, M. C., GILMORE, P. J. & MILLS, K. J. 2011. The

- Mount Wright Arc: A Cambrian subduction system developed on the continental margin of East Gondwana, Koonenberry Belt, eastern Australia. *Gondwana Research* **19**, 650-669. https://doi.org/10.1016/j.gr.2010.11.017
- GUILLONG, M., SAMANKASSOU, E., MÜLLER, I. A., SZYMANOWSKI, D., LOOSER, N., TAVAZZANI, L., MERINO-TOMÉ, Ó., BAHAMONDE, J. R., BURET, Y. & OVTCHAROVA, M. 2024. Technical note: RA138 calcite U-Pb LA-ICP-MS primary reference material. *GChron* 6(3), 465-474. https://doi.org/10/5194/gchron-6-465-2024
- HAINES, P. W., TURNER, S. P., FODEN, J. D. & JAGO, J. B. 2009. Isotopic and geochemical characterisation of the Cambrian Kanmantoo Group, South Australia: implications for stratigraphy and provenance. *Australian Journal of Earth Sciences* **56(8)**, 1095-1100 https://doi.org/10.1080/08120090903246212
- HARRISON, A. & WHITE, R. S. 2006. Lithospheric structure of an active back-arc basin: the Taupo Volcanic Zone, New Zealand. *Geophysical Journal International* **167(2)**, 968-990. https://doi.org/10.1111/j.1365-246X.2006.03166.x
- HILL, C. A., POLYAK, V. J., ASMEROM, Y. & PROVENCIO, P. P. 2016. Constraints on a Late Cretaceous uplift, denudation and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. *Tectonics* 35, 896-906. https://doi.org/10.1002/2016TC004166
- HOGMALM, K. J., ZACK, T., KARLSSON, A. K.-O., SJÖQVIST, A. S. L. & GARBE-SCHÖNBERG, D. 2017. *In situ* Rb-Sr and K-Ca dating by LA-ICP-MS/MS: an evaluation of N<sub>2</sub>O and SF<sub>6</sub> as reaction gases. *Journal of Analytical Atomic Spectrometry* **32**(2), 305-313. https://doi.org/10.1039/C6JA00362A
- HONG, W., FABRIS, A., GILBERT, S., WADE, B. P., COLLINS, A. S., WISE, T. & REID, A. J. 2024. Using zircon and apatite chemistry to fingerprint porphyry Cu Mo±Au mineralization in the Delamerian Orogen, South Australia. *Mineralium Deposita* **59(1)**. <a href="https://doi.org/10.1007/s00126-024-01287-y">https://doi.org/10.1007/s00126-024-01287-y</a>
- HONG, W., FABRIS, A., WISE, T., COLLINS, A. S., GILBERT, S., SELBY, D., CURTIS, S. & REID, A. J. 2023. Metallogenic Setting and Temporal Evolution of Porphyry Cu-Mo Mineralization and Alteration in the Delamerian Orogen, South Australia: Insights From Zircon U-Pb, Molybdenite Re-Os, and In situ White Mica Rb-Sr Geochronology. *Society of Economic Geologists* 118, 1291-1318. https://doi.org/10.5382/econgeo.5012
- HUSTON, D., CAYLEY, R. A. & CHAMPION, D. 2015. The giant Lachlan Orocline- A powerful new predictive tool for mineral exploration undercover across eastern Australia. *Mines & Wines*. PowerPoint Presentation (smedg.org.au)
- HUSTON, D., CAYLEY, R. A. & CHAMPION, D. 2015. Metallogenesis of the Lachlan Orocline: Is the is the mineral wealth of southeast Australia due to the accretion of VanDieland? *Mines & Wines*.
- IRELAND, T. R., FLÖTTMANN, T., FANNING, C. M., GIBSON, G. M. & PREISS, W. V. 1998.

  Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian Orogen. *Geology* **26(3)**, 243-246.

  <a href="https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2">https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2</a>
- JOHNSON, E. L., PHILLIPS, G. & ALLEN, C. M. 2016. Ediacaran-Cambrian basin evolution in the Koonenberry Belt (eastern Australia): Implications for the geodynamics of the Delamerian Orogen. *Gondwana Research* 37, 266-284. https://doi.org/10.1016/j.gr.2016.04.010
- JOHNSON, M. R. W. & HARLEY, S. L. 2012. Orogenesis: The making of mountains. *Cambridge University Press*.
- KORSCH, R. J., FOMIN, T., CONOR, C. H. H., STEVENS, B. P. J., GOLEBY, B. R., ROBERTSON, R. S. & PREISS, W. V. 2006. A deep seismic reflection transect across the Curnamona Province from the Darling basin to the Flinders Ranges. *Broken Hill Exploration Initiative*.
- KURTZSCHBACH, M. & GLODNY, J. 2024. LA-ICP-MS/MS-based Rb-Sr isoptope mapping for geochronology. *Journal of Analytical Atomic Spectrometry* **39**, 455-477. https://doi.org/10.1039/D3JA00297G
- LANE, R. J. L., WYNNE, P. E., POUDJOM DJOMANI, Y., STRATFORD, W. R., BARRETTO, J. A. & CARATORI TONTINI, F. 2019. Australian National Gravity Grids: Free Air Anomaly, Complete Bouger Anomaly, De-trended Global Isostatic Residual, 400m cell size. Geoscience Australia, Canberra.
- LEWIS, C. J., TAYLOR, D. H., CAYLEY, R. A., SCHOFIELD, A. & SKLADZIEN, P.B. 2015. New SHRIMP U-Pb zircon ages from the Stavely region, western Victoria, Geoscience Australia. http://dx.doi.org/10.11636/Record.2015.026

- LI, Z. X., BOGDANOVA, S. V., COLLINS, A. S., DAVIDSON, A., DE WAELE, B., ERNST, R. E., FITZSIMONS, I. C. W., FUCK, R. A., GLADKOCHUB, D. P., JACOBS, J. KARLSTROM, K. E., LU, S. NATAPOV, L. M., PEASE, V., PISAREVSKY, S. A., THRANE, K. & VERNIKOVSKY, V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. *Precambrian Research* 160(1-2), 179-210. <a href="https://doi.org/10.1016/j.precamres.2007.04.021">https://doi.org/10.1016/j.precamres.2007.04.021</a>
- LI, Z. X., LIU, Y. & ERNST, R. 2023. A dynamic 2000-540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. *Earth-Science Reviews* **238**, 104336. https://doi.org/10.1016/j.earscirev.2023.104336
- LI, Z. X., ZHANG, L. & POWELL, C. M. 1995. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? *Geology* 23(5), 407-410.\
  https://doi.org/10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
- LISTER, G. & FORSTER., M (2009). Tectonic mode switches and the nature of orogenesis. *Lithos* 113, 274-291. https://doi.org/10.1016/j.lithos.2008.10.024
- MCDONOUGH, W. F. & SUN, S. -S. 1995. The composition of the Earth. *Chemical Geology* **120(3-4)**, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- MERDITH, A. S., WILLIAMS, S. E., BRUNE, S., COLLINS, A. S. & MÜLLER, R. D. 2019. Rift and plate boundary evolution across two supercontinent cycles. *Global and Planetary Change* **173**, 1-14. https://doi.org/10.1016/j.gloplacha.2018.11.006
- MERDITH, A. S., WILLIAMS, S. E., COLLINS, A. S., TETLEY, M. G., MULDER, J. A., BLADES, M. L., YOUNG, A., ARMISTEAD, S. E., CANNON, J., ZAHIROVIC, S. & MÜLLER, R. D. 2021. Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. *Earth Science reviews* **214**, 103477. <a href="https://doi.org/10.1016/j.earscirev.2020.103477">https://doi.org/10.1016/j.earscirev.2020.103477</a>
- MERDITH, A.S., WILLIAMS, S. E., MÜLLER, R. D. & COLLINS. A. S. 2017. Kinematic constraints on the Rodinia to Gondwana transition. *Precambrian Research* **299**, 132-150. https://doi.org/10.1016/j.precamres.2017.07.013
- MOLE, D., CLARK, A., BODORKOS, S. & LEWIS, C. 2024. New U-Pb SHRIMP zircon geochronology from NDI drilling of the Delamerian Orogen: Loch Lilly-Kars and Lake Wintlow Belts, southwest NSW. GA Record 2024/21. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/149417
- MORTIMER, G.E., COOPER, J. A. & JAMES, P.R. 1987. U Pb and Rb Sr geochronology and geological evolution of the Harts Range ruby mine area of the Arunta Inlier, central Australia. *Lithos* **20(6)**, 445-476. https://doi.org/10.1016/0024-4937(87)90029-6
- MORESI, L., BETTS, P. G., MILLER, M. S. & CAYLEY R.A. 2014. Dynamics of continental accretion. *Nature*, **508**, 245-248. https://doi.org/10.1038/nature13033
- NORRIS, A & DANYUSHEVSKY, L. 2018. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. *Goldschmidt*, Boston, 2018—8-12. http://norsci.com/ladr/
- PATON, C. HELLSTROM, J., PAUL, B., WOODHEAD, J. & HERGT, J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic Spectrometry* **26(12)**, 2508-2518. https://doi.org/10.1039/C1JA10172B
- PETRUS, J. A., CHEW, D. M., LEYBOURNE, M. I. & KAMBLER, B. S. 2017. A new approach to laserablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool Monocle? *Chemical Geology* **463**, 76-93. https://doi.org/10.1016/j.chemgeo.2017.04.027
- POUDJOM DJOMANI, Y., MINTY, B. R.S., HUTCHENS, M. & LANE, R. J. L. 2019. Total Magnetic Intensity (TMI) Grid of Australia 2019- seventh edition 80m cell size. Geoscience Australia, Canberra. <a href="https://dx.doi.org/10.26186/5e9cf3f2c0f1d">https://dx.doi.org/10.26186/5e9cf3f2c0f1d</a>
- RASBURY, E. T. & COLE, J. M. 2009. Directly dating geologic events: U-Pb dating of carbonates. *Reviews of Geophysics* **47(3)**, 1-27. https://doi.org/10.1029/2007RG000246
- REDAA, A., FARKAS, J., GILBERT, S., COLLINS, A. S., LÖHR, S., VASEGH, D., FORSTER, M., BLADES, M., ZACK, T., GIULIANI, A., MASS, R., BALDERMANN, A., DIETZEL, M. & GARBE-SCHÖNBERG, D. 2023. Testing Nano-Powder and Fused-Glass Mineral Reference Materials for *in-situ*

- Rb-Sr Dating of Glauconite, Phlogopite, Biotite and Feldspar via LA-ICP-MS/MS. *Geostandards and Geoanalytical Research* **47(1)**, 23-48.
- https://doi.org/10.1111/ggr.12467
- REDAA A., FARKAS, J., GILBERT, S., COLLINS, A. S., WADE, B., LÖHR, S., ZACK, T. & GARBE-SCHÖNBERG, D. 2021. Assessment of elemental fractionation and matrix effects during *in-situ* Rb-Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. *Journal of Analytical Spectrometry* **36(2)**, 322-344. <a href="https://doi.org/10.1039/D0JA00299B">https://doi.org/10.1039/D0JA00299B</a>
- ROBERTS, N. M. W., RASBURY, E. T., PARRISH, R. R., SMITH, C. J., HORSTWOOD, M. S. A. & CORDON, D. J. 2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. *Geochemistry, Geophysics, Geosystems* **18(7)**, 2807-2814. https://doi.org/10.1002/2016GC006784
- ROLLINSON, H. & PEASE, V. 2021. Using Radiogenic Isotope Data. In: *Using Geochemical Data: To Understand Geological Processes. Cambridge University Press.* 178-218. https://doi.org/10.1017/9781108777834.009
- ŞENGÖR, A. M. C. 2020. Orogenic Belts. In: Gupta, H.K. (eds). *Encyclopedia of Solid Earth Geophysics*. *Encyclopedia of Earth Sciences series*. Springer, Cham. <a href="https://doi.org/10.1007/978-3-030-10475-7">https://doi.org/10.1007/978-3-030-10475-7</a> 253-1
- SILLITOE, R.H. 2010. Porphyry Copper Systems. *Economic Geology* **105**(1), 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
- SHAANAN, U., ROSENBAUM, G. & SIHOMBING, F. M. H. 2018. Continuation of the Ross-Delamerian Orogen: insights from eastern Australian detrital-zircon data. *Australian Journal of Earth Sciences*. **65**(7-8), 1123-1131. https://doi.org/10.1080/08120099.2017.1354916
- STEVENSON, R., HENRY, P., GARIÉPY, C. 1999. Assimilation-fractional crystallization origin of Archean Sanukitoid Suites: Western Superior Province, Canada. *Precambrian Research* **96**(**1-2**), 83-99. https://doi.org/10.1016/S0301-9268(99)00009-1
- STRAUB, S. M., GÓMEZ-TUENA, A. & VANNUCCHI, P. 2020. Subduction erosion and arc volcanism. Nature Reviews Earth & Environment 1, 574-589. https://doi.org/10.1038/s43017-020-0095-1
- SUBARKAH, D., BLADES, M. L., COLLINS, A. S., FARKAS, J., GILBERT, S., LÖHR, S. C., REDAA, A., CASSIDY, E. & ZACK, T. 2022. Unraveling the histories of Proterozoic shales through *in-situ* Rb-Sr dating and trace element laser ablation analysis. *Geology* **50**(1), 66-70. <a href="https://doi.org/10.1130/G49187.1">https://doi.org/10.1130/G49187.1</a>
- SUBARKAH, D., NIXON, A. L., GILBERT, S. E., COLLINS, A. S., BLADES, M. L., SIMPSON, A., LLOYD, J. C., VIRGO, G. M. & FARKAS, J. 2024. Double dating sedimentary sequences using new applications of in-situ laser ablation analysis. *Lithos* **480-481.** 107649. <a href="https://doi.org/10.1016/j.lithos.2024.107649">https://doi.org/10.1016/j.lithos.2024.107649</a>
- TANAKA, T., DRAGUSANU, S., SHINJO, R., HIROSHI, A., YOSHIHIRO., SHIGEKO, T., MASAKI, Y., SHIGEKAZU, Y., KAZUYA, T., TAKANORI, N., MASAHARU, T., HIROSHI, S., HIROKAZU, F., HIROO, K., HIKARI, K., ORIHASHI, Y., TAKUJI, H., TAKERU, Y. & TAKANORI, K. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. *Chem. Geol.* **168**, 279-281
  - https://doi.org/10.1016/S0009-2541(00)00198-4
- VERMEESCH, P. 2018. IsoplotR: a free and open toolbox for geochronology. *Geoscience Frontiers* **9**, 1479-1493.
  - https://doi.org/10.1016/j.gsf.2018.04.001
- VERVOORT, J. 2018. Geochronology and Radiogenic Isotopes. *Encyclopedia of Geochemistry*, 571-586. <a href="https://doi.org/10.1007/978-3-319-39312-4">https://doi.org/10.1007/978-3-319-39312-4</a> 291
- VILLAROS, A., STEVENS, G., MOYEN, J-F. & BUICK, I.S. 2009. The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. *Contributions to Mineralogy and Petrology* **158**, 543-561. https://doi.org/10.1007/s00410-009-0396-3
- WADE, B. P., BAROVICH, K. M. HAND, M., SCRIMGEOUR, I. R. & CLOSE, D. F. 2006. Evidence for early Mesoproterozoic Arc Magmatism in the Musgrave Block, Central Australia: Implications for Proterozoic crustal Growth and Tectonic Reconstructions of Australia. *The Journal of Geology* **114(1)**. https://doi.org/10.1086/498099
- WEN, B., EVANS, D. A. D., LI, Y. X. 2017. Neoproterozoic paleogeography of the Tarim Block: An extended or alternative "missing-link" model for Rodinia? *Earth and Planetary Science Letters* **458**, 92-106. <a href="https://doi.org/10.1016/j.epsl.2016.10.030">https://doi.org/10.1016/j.epsl.2016.10.030</a>

WHALEN, J. B., PERCIVAL, J. A., MCNICOLL, V. J. & LONGSTAFFE, F. J. 2003. Intra-oceanic production of continental crust in a Th-depleted ca. 3.0Ga arc complex, western Superior Province, Canada. *Contributions to Mineralogy and Petrology* **146**, 78-99. 291https://doi.org/10/1007/s00410-003-0484-

# APPENDIX 1: TABLE OF SAMPLES AND EQUIVALENT HOLE AND DEPTH

| Sample Name | Description                           | Latitude | Longitude | Hole Number | Depth (m)       |
|-------------|---------------------------------------|----------|-----------|-------------|-----------------|
| LK12-186    | Shale cross-cut by carbonate veins    | -32.5915 | 141.0916  | NDILLK12    | 186.0 - 186.1   |
| LK12-173a   | Shale and felsic dyke contact         | -32.5915 | 141.0916  | NDILLK12    | 173.0           |
| LK12-173c   | Calcite vein (mineralised sulphides)  | -32.5915 | 141.0916  | NDILLK12    | 173.8           |
| LK12-173b   | Dyke shale margin + carbonate in dyke | -32.5915 | 141.0916  | NDILLK12    | 173.15 -173.25  |
| LK12-172    | Shale + dyke contact                  | -32.5915 | 141.0916  | NDILLK12    | 172.3 - 172.37  |
| LK13-194    | Shale and interbedded carbonates      | -32.6603 | 141.1043  | NDILLK13    | 194.75 - 194.85 |
| LK13-198    | Shale and interbedded carbonates      | -32.6603 | 141.1043  | NDILLK13    | 198.85 - 199    |
| LK13-215    | Shale and interbedded carbonates      | -32.6603 | 141.1043  | NDILLK13    | 215.6 - 215.7   |
| LK13-214    | Shale and interbedded carbonates      | -32.6603 | 141.1043  | NDILLK13    | 214.7 - 214.8   |
| LK11-323    | Shale                                 | -32.554  | 141.0915  | NDILLK11    | 323.7           |
| LK11-369    | Shale                                 | -32.554  | 141.0915  | NDILLK11    | 369.3           |
| LK14-365    | Carbonate veins cross-cutting shale   | -33.1389 | 141.0789  | NDILLK14    | 365.1 - 365.15  |
| LK14-361    | Shale                                 | -33.1389 | 141.0789  | NDILLK14    | 361.6           |
| LK14-379    | Shale                                 | -33.1389 | 141.0789  | NDILLK14    | 379.6           |
| MP02-556    | Albitic altered host rock             | -33.4995 | 141.6245  | NDIWMP02    | 556.3 - 556.37  |
| MP02-628    | Fresh intermediate igneous rock       | -33.4995 | 141.6245  | NDIWMP02    | 628.8           |
| MP02-579    | Albitic altered host rock             | -33.4995 | 141.6245  | NDIWMP02    | 579 - 579.09    |
| MP02-560    | Albitic altered host rock             | -33.4995 | 141.6245  | NDIWMP02    | 560.49 - 560.65 |
| MP02-583    | Albitic altered host rock             | -33.4995 | 141.6245  | NDIWMP02    | 583.5 - 583.7   |
| MP03-493    | Albitic altered host rock             | -33.7688 | 141.4251  | NDIWMP03    | 493.43          |
| MP03-548    | Albitic altered host rock             | -33.7688 | 141.4251  | NDIWMP03    | 548.7 - 548.8   |
| MP03-546    | Albitic igneous rock with veining     | -33.7688 | 141.4251  | NDIWMP03    | 546.6 - 546.8   |

# **APPENDIX 2: SAMPLE PHOTOS AND DESCRIPTION**

| SAMPLE ID | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                           | РНОТО |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| LK12 186  | This sample is dominantly shale with cross-cutting carbonate veins throughout. The shale is bordering on being a siltstone looks to be dominantly lithics (>85%) with the remainder quartz (15%) no feldspars are present and no obvious bedding layers. Carbonate veins appear to be multigenerational.                                                                                              |       |
| LK12 173a | This sample shows the clear contact between a very fine-grained igneous dyke and its host sediment. The dyke is grey in colour and the shale is the darker region and we can see clear bedding in the shale of ~1mm between lithic-rich layers and quartz-rich layers. The contact between the two is almost white in color and we see evidence of small veins breaking away from the main intrusion. |       |

| LK12 173c | This sample is one of two samples that show sulphide mineralisation. It contains shale and complex carbonate veining throughout with sulphides only prevalent at the contact with the shale. The sulphides appear to be purely pyrite.                                                                                                                                                                                         |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LK12 173b | The only sample I have which contains the shale + dyke + carbonate. The dyke intrudes the shale and has resulted in the shale being metamorphosed and gaining a 'sheen' to it. The dyke is then subsequently intruded by carbonate veins indicating two generations of intrusion. No sulphides are present in this sample. Given the appearance and colouration, this dyke looks to be part of the same system from LK12 173a. |  |

| LK12 172 | This sample contains another contact between the dyke and shale. We can see that the contact appears to contain little veins of carbonate which look to be following this contact as a point of weakness. The shale no longer has straight bedding and appears to have been warped by the heat that either the dyke or carbonate have imparted on it. |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LK13 194 | This core piece is an example of the interbedded carbonate and shale. The beds appear to be consistent. The shale is the dominant lithology but there appears to be a regular pattern. This likely indicates stable formation conditions and the change could be attributed to Milankovitch cycles more than tectonics.                               |  |

| LK13 198 | Another example from LLK13 of the interbedded carbonate and shale. We see the same consistent beds but compared to LLK13 194 this doesn't look as 'clean' with evidence for patches of carbonate present and not in beds. There are also very small veins through it like the one on the right side of this photo. |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LK13 215 | More bedded shale + carbonates from LLK13. This sample also not as 'clean' as LLK13 194. We can see evidence for alteration post deposition here and more fine carbonate veins.                                                                                                                                    |  |

| LK13 214 | Our last of 4 interbedded shale + carbonate sequences. We can see more clearly on this sample the alteration throughout. We see in the right piece, a contact between the lighter, more altered region and the darker less altered region. This shows we have not only interbedded carbonates but also a phase of post deposition alteration as fluids moved through the sequences. |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LK11 323 | This sample is our most classic shale. It exhibits very little 'sheen' indicating it likely is our least altered shale. It also lacks the carbonate beds seen in LLK13 drill hole and there is no obvious lithological difference between bedding layers with quite a homogenous mineralogy. Dominantly lithics with minimal quartz (~10-20%) and no feldspars (<1%).               |  |

### LK11 369 Another shale sample which lacks the bedded carbonates and is dominantly lithics. We can also see in this sample that while there is minimal lithological difference between the beds, that each bed is only sub-mm in scale. This sample is beginning to give that 'slaty' appearance to it unlike LLK11 323 indicating it might have been subjected to higher temperatures. LK14 365 This sample is the second and final sample that contains sulphides. These sulphides are again spatially associated with the contact between the complex carbonate veins and shale. This sample shows how complex these carbonate veins are with at least 3 different generations of veining. The largest veins run $\sim 60^{\circ}$ to the small veins. The shale is again very dark and lacks any obvious bedding features but it does appear that the smaller veins tend to almost follow bedding planes.

## LK14 361 An example of a metamorphosed shale. It is a much shinier sample than those from LLK11 and we can see clearly the extent of alteration the sample has undergone on the top surface here with significant discolouration to the darker shale. Bedding as not visible on this sample at all and has likely been overprinted by the metamorphism it has undergone. Is not yet a phyllite or slate. LK14 379 This sample is another example of a shale but here we have an example of some of the structural complexity in these rocks. We can see bedding layers of shale and carbonate and a generation of carbonate veining running perpendicular to those beds. We can also see subsequent to that that these veins have been offset by small-scale faults.

## This sample is the original sample that thin section and MP02 556 geochemical analysis sample MP02A came from. We can see clearly here the breccia veins that are co obvious in thin section and the complete alteration of any original sample textures that existed. Based on analysis this sample was initially an igneous intermediate rock that has been overprinted and brecciated by subsequent magmatism and/or hydrothermal activity. MP02 628 This sample is the original sample than thin section and geochemical analysis MP02B came from. This sample is clearly an intermediate igneous rock. It is fine-medium crystal size but mineralogically quite simple. The dark parches are biotite and light are a mix of quartz and plagioclase. It does not look to be highly altered.

## MP02 579 This is another example of the alteration breccia present in MP02. We can again see the extent of alteration with no original features of the rock being preserved. The brecciation has al least two generations, with some veins off-set by further brecciation. The sample exhibits the same albitic alteration seen in MP02 556. MP02 560 This is another example of our alteration breccia and this sample in particular shows the sheer complexity of the alteration. This sample shows the extent to which broken material has been re-worked by these penetrating fluids with the pieces in the veins no longer clearly fitting together like puzzle pieces and already brecciated material being broken into even smaller pieces. We can see that this drill hole has at least a 50m section of this within it and indicates the size of the event.

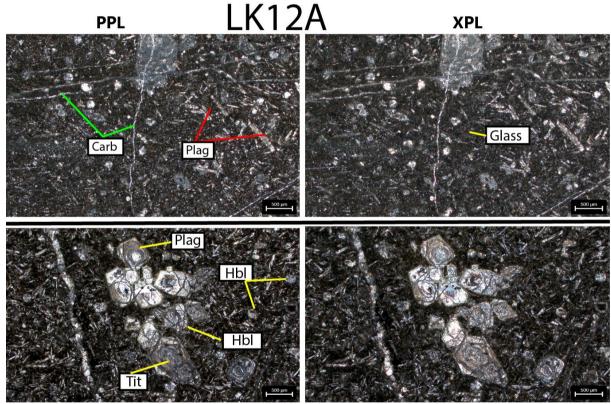
| MP02 583 | Our final alteration breccia sample. Shows the same perverse albitic alteration but the brecciation is less complex and pronounced here.                                                                                                                                                                                                                                                                                                                                                   |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MP03 493 | This sample is likely a proxy for what the host rock of the alteration breccia in our MP02 samples originally looked like. It is also the sample which geochemical and thin section analysis sample MP03A is. We can see an intermediate igneous rock with its coarsest phase being a dark mineral. We can see that this sample has also been altered as shown by the lighter almost yellow colouration throughout it, however much less significant than MP02. It is likely also albitic. |  |

### MP03 548

This sample is what our geochemical and thin section analysis sample MP03B was taken from (bottom piece). The bottom piece is likely the least altered igneous sample we have from the entire collection. We do not see any of that yellow discolouration throughout it. The top piece shows some discolouration and is again an intermediate igneous rock with the largest mineral phase being the black crystals seen without a hand lens.



### MP03 546

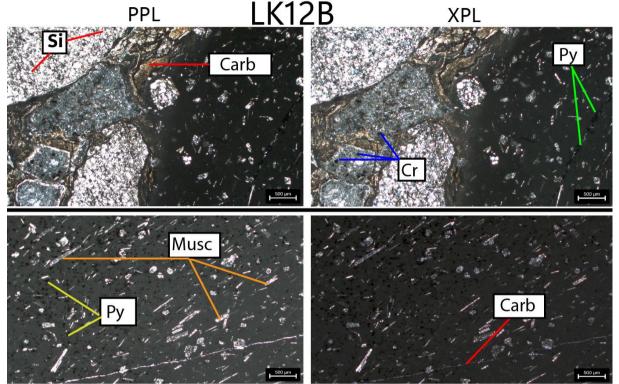

This sample shows the same intermediate rock seen in other MP03 samples but in this case we see cross-cutting intrusive veins and its associated alteration halo. We can see that the veins impart the yellow discolouration to the host igneous suite. This sample likely shows the middle-ground between those fresher igneous samples in MP03 and the alteration breccias that dominate the samples in MP02 and shows a likely mechanism for the alteration.



## APPENDIX 3: DETAILED THIN SECTION DESCRIPTIONS OF IGNEOUS SAMPLES FROM LLKB

### Appendix 3A: LK12A

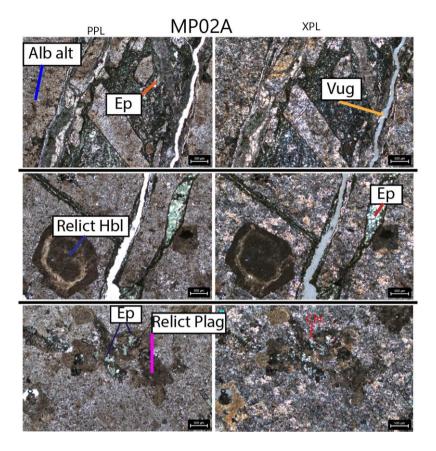
Sample LLK12A is dominated (>60% of sample) by a matrix of glass and acicular plagioclase crystals along with more rounded hornblende crystals which have no preferential growth direction. There are remnants of original phenocrysts which have been altered to a point where original composition is impossible to deduce but based on the remnant shape, they appear to be dominantly olivine and hornblende with a small number of titanite crystals. There is a significant number of thin carbonate veins which run through the thin section in multiple directions and some cross-cutting other veins, indicating multiple phase carbonate intrusion.




Annotated thin section photos taken of LLK12A (NDILLK12-172) sample. Photos on the left are PPL and photos on the right are XPL. Carb = Carbonate, Plag = Plagioclase, Hbl = Hornblende, Tit = Titanite, Glass = Glass.

### Appendix 3B: LK12B

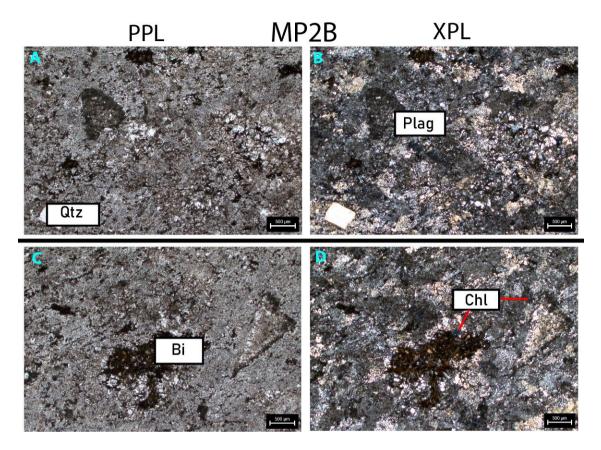
Sample LLK12B is a thin section of the contact between the host sediment and fine-grained intrusive from LLK12A. The host sediment is dominantly fine-grained, subrounded quartz (65%) and very fine-grained lithic fragments. The intrusion contains a dominantly glass matrix with small acicular muscovites (mineralogy deduced from MLA maps (Figure \*\*)) which are orientated parallel to the contact boundary. The


intrusion contains oxides both disseminated and veined (Figure \*\*). The oxides inside the intrusion are exclusively pyrite. The intrusion is also cross-cut by carbonate veins. The alteration halo between the intrusion and host sediment contains carbonate and large plagioclase crystals (width greater than 500µm) which don't exist elsewhere in the sample. These plagioclase crystals have chromite located around their rims and this chromite does not occur anywhere else in the sample either.



Annotated thin section photos taken of LLK12B (NDILLK12-173) sample. Photos on the left are PPL and photos on the right are XPL. Carb = Carbonate, Musc = Muscovite, Py = Pyrite, Cr = Chromite.

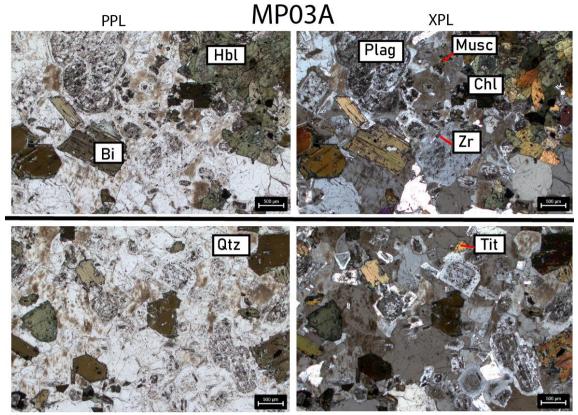
### **Appendix 3C: MP2A**


Sample MP02 is a thin section of the alteration breccia present dominantly in our NDIWMP02 drillhole. The sample is a highly altered igneous host rock. The alteration is albitic and phenocrysts have been altered beyond recognition or in some cases completely destroyed but we can see their euhedral character prior to alteration supporting the assumption they are initially igneous crystals. The sample brecciation contains an infill of dominantly epidote and chlorite. There is also a significant amount of pore-space remaining in these breccia veins. It is difficult to determine the previous mineral assemblage of the sample but looking at relict crystals, we can see that initially it was dominantly plagioclase and hornblende, similar to MP3B. These have partially broken down to epidote in some cases.



Annotated thin section photos taken of MP2A (MP02-556) sample. Photos on the left are PPL and photos on the right are XPL. Alb alt = Albitic alteration, Ep = Epidote, Vug = air, relict Hbl = Relict Hornblende, Relict Plag = relict Plagioclase.

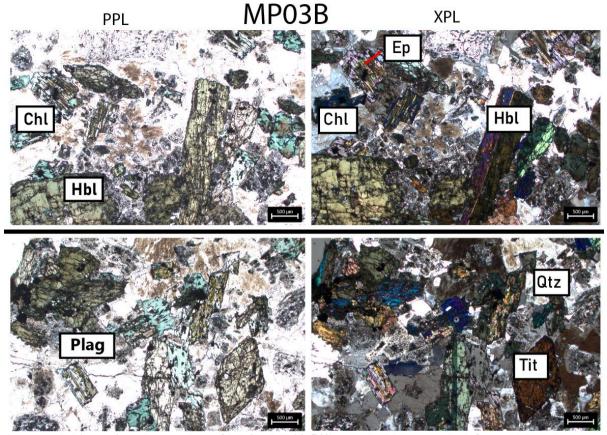
### Appendix 3D: MP2B


Sample MP2B is a thin section of our only fresh igneous sample from drillhole NDIWMP02. It is a fine-grained felsic intrusive rock which is dominated by fine-grained quartz (40%), fine-grained plagioclase (35%) & Biotite (20%) which grows exclusively in clumps. Biotite is the largest crystals in this sample except for a small number of large square quartz crystals. Some biotite crystals on the edge of the clumps has broken down to chlorite.



Annotated thin section photos taken of MP2B (MP02-628) sample. Photos on the left are PPL and photos on the right are XPL. Qtz = quartz, Chl = chlorite, Bi = biotite, Plag = plagioclase.

### **Appendix 3E: MP3A**


MP3A is a thin section of the freshest and coarsest igneous intrusive rock in this project. The dominant mineral phases are quartz and plagioclase (~30% each). The quartz contains a perverse iron-stain throughout it which makes it easy to separate from the plagioclase which shows the classic sieve texture seen in intrusions that see multiple phases of pooling in the crust before emplacement. The plagioclase contain very clean outer rims in almost all cases. Hornblende (20%) is coarse-grained and grows in clumps together. The minor mineral phases are Biotite (10%) which when close to iron-stained quartz has broken down to chlorite (5%), muscovite (4%) and zircon and titanite (<1%).



Annotated thin section photos taken of MP3A (MP03-493) sample. Photos on the left are PPL and photos on the right are XPL. Qtz = quartz, Chl = chlorite, Bi = biotite, Plag = plagioclase, Hbl = hornblende, Tit = titanite, Zr = zircon, Musc = muscovite.

### Appendix 3F:MP3B

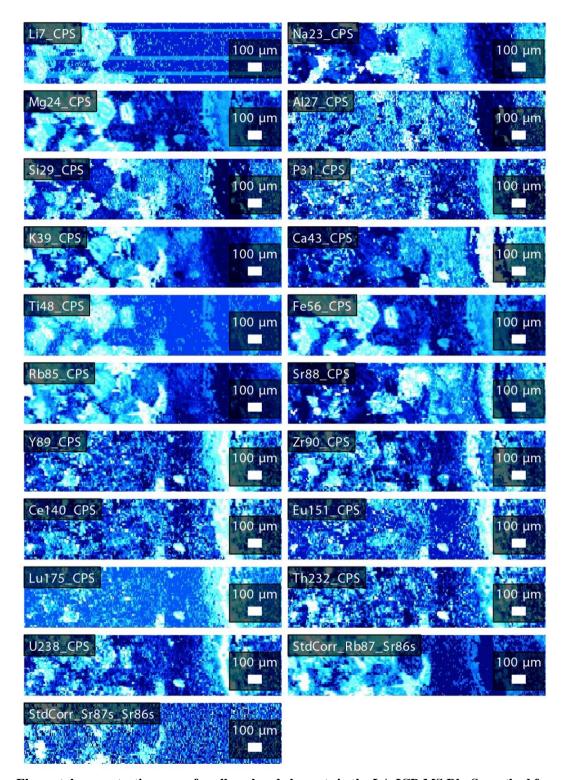
MP3B is a thin section of an igneous intrusive sample from drillhole NDIWMP03. The sample itself comes from the freshest portion of an altered sample and as such it is not completely fresh. This is obvious when looking at the mineral textures. We can see that the biotite that was originally in the sample has completely broken down to a chlorite (15%) and epidote (5%) assemblage. The hornblende (35%) in this sample shows very distinct simple twinning. There are also a number of coarse titanite crystals (5%). These plagioclase crystals are smaller than MP3A (10%) and do not contain clean rims unlike MP3A and the quartz (30%) iron-staining is a darker colour in this sample too.



Annotated thin section photos taken of MP3B (MP03-548) sample. Photos on the left are PPL and photos on the right are XPL. Qtz = quartz, Chl = chlorite, Ep = epidote, Plag = plagioclase, Hbl = hornblende, Tit = titanite.

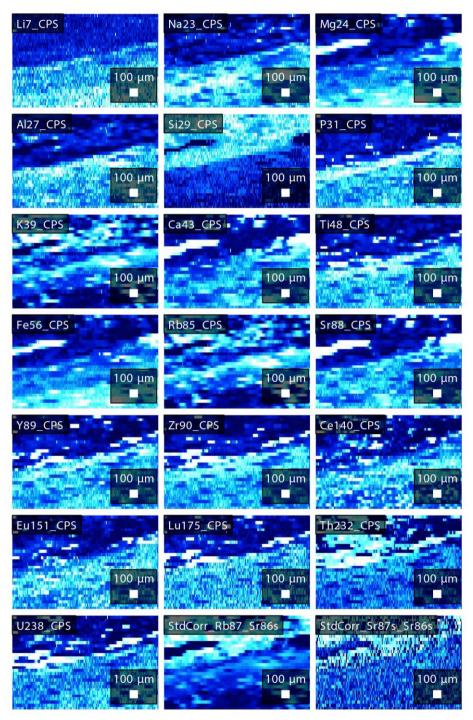
## APPENDIX 4: ELEMENTAL DWELL TIMES FOR LA-ICP-MS RB-SR SPOT AND ELEMENTAL MAPPING ANALYSIS

Elemental dwell times for LA-ICP-MS Rb-Sr spot & elemental mapping analysis


| Element | Atomic Mass | Dwell Time (ms) |
|---------|-------------|-----------------|
| K       | 39          | 2               |
| Mg      | 24          | 2               |
| Y       | 89          | 5               |
| Rb      | 85          | 10              |
| Li      | 7           | 2               |
| P       | 31          | 2               |
| Sr      | 88          | 20              |
| Sr      | 87          | 5               |
| Sr      | 86          | 5               |
| Ca      | 43          | 2               |
| Si      | 29          | 2               |
| Ti      | 48          | 2               |
| Ce      | 140         | 5               |
| Na      | 23          | 2               |
| Fe      | 56          | 2               |

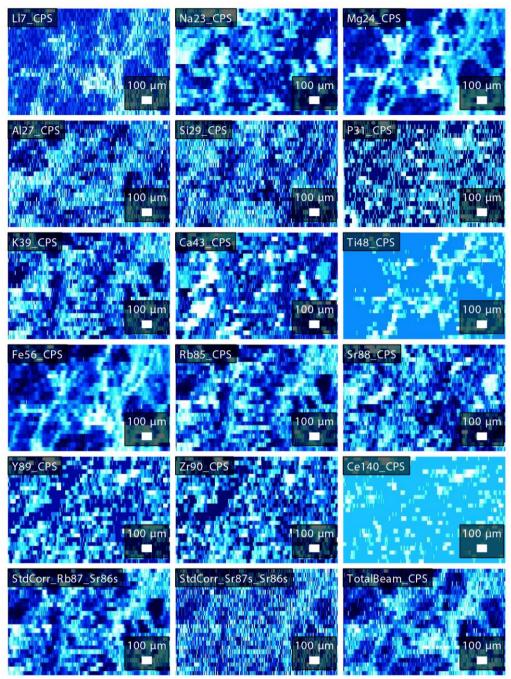
| Al               | 27  | 2  |
|------------------|-----|----|
| Eu               | 151 | 5  |
| Lu               | 175 | 5  |
| U                | 238 | 5  |
| Zr               | 90  | 5  |
| Th               | 232 | 5  |
| TOTAL SWEEP TIME |     | 95 |

# APPENDIX 5: ELEMENTAL DWELL TIMES FOR LA-ICP-MS U-PB ELEMENTAL MAPPING ANALYSIS


| Element          | Atomic Mass | Dwell Time (ms) |
|------------------|-------------|-----------------|
| Al               | 27          | 2               |
| Si               | 29          | 2               |
| P                | 31          | 2               |
| Ti               | 47          | 2               |
| Ca               | 43          | 2               |
| Fe               | 57          | 2               |
| Mn               | 55          | 2               |
| Rb               | 85          | 2               |
| Zr               | 90          | 2               |
| Ce               | 140         | 2               |
| Hg               | 201         | 15              |
| Pb               | 204         | 2               |
| Pb               | 206         | 8               |
| Pb               | 207         | 100             |
| Pb               | 208         | 10              |
| Th               | 232         | 10              |
| U                | 238         | 40              |
| U                | 235         | 20              |
| Y                | 89          | 2               |
| V                | 51          | 2               |
| Sr               | 88          | 2               |
| Ba               | 137         | 2               |
| TOTAL SWEEP TIME |             | 233             |

## APPENDIX 6: ELEMENTAL COMPOSITION MAPS FROM IOLITE4 FOR SAMPLE MP03-493.




Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample MP03-493. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.

## APPENDIX 7: ELEMENTAL COMPOSITION MAPS FROM IOLITE4 FOR SAMPLE LK-172.



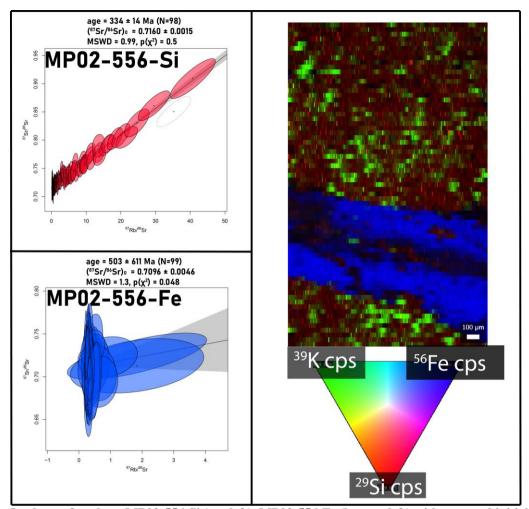
Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample LLK-172. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.

## APPENDIX 8: ELEMENTAL COMPOSITION MAPS FROM IOLITE4 FOR SAMPLE MP02-583.

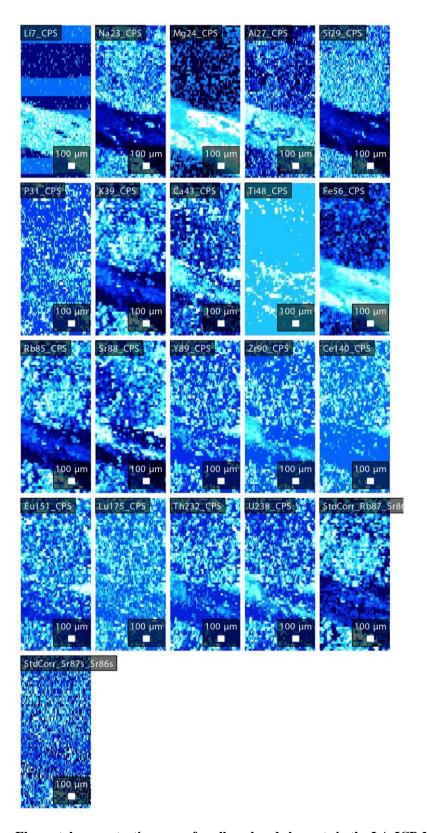


Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample MP02-583. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.

### 

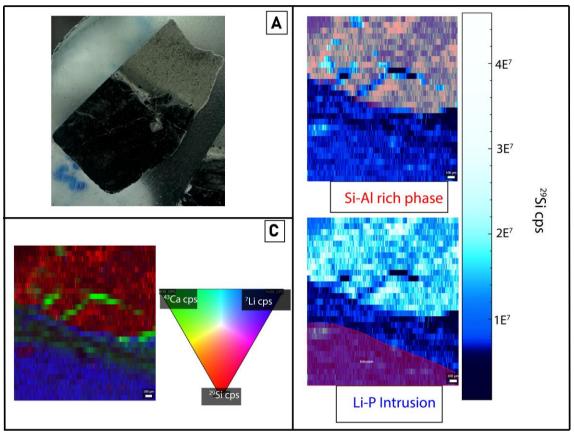

### APPENDIX 9: SAMPLE MP02556

A- Sample MP02-556 mounted in epoxy; B- Two distinct pixel maps for phases (Si-K rich phase), Mg-Li vein) present in sample MP02-556 (red regions) overlain on <sup>29</sup>Si concentration map (left) and <sup>29</sup>Si scale (right); C- The two distinct phases in B compiled into one ternary diagram showing their respective spatial locations relative to each other.


LA-ICP-MS analysis of this sample revealed two clear phases within. Looking at the chip we can see the two phases, The majority of the chip is a white/salmon coloured igneous sample dominated by felsic minerals like quartz and feldspar. There is also a thin black vein cutting through this (Figure \*\*, A). These two phases were separated and geochronological analysis was run on them separately.

The Si-K rich phase (MP02-556-Si) returned an age of  $334 \pm 14$  Ma ( $2\sigma$  error) and an initial  $^{87}\text{Sr}/^{86}\text{Sr}$  of  $0.7160 \pm 0.0015$  from 99 analytical points (Figure \*\*).

The Fe-Li rich phase (MP02-556-Fe) returned an age of  $503 \pm 611$  Ma ( $2\sigma$  error) and an initial  $^{87}\text{Sr}/^{86}\text{Sr}$  of  $0.7096 \pm 0.0046$  from 99 analytical points (Figure \*\*).

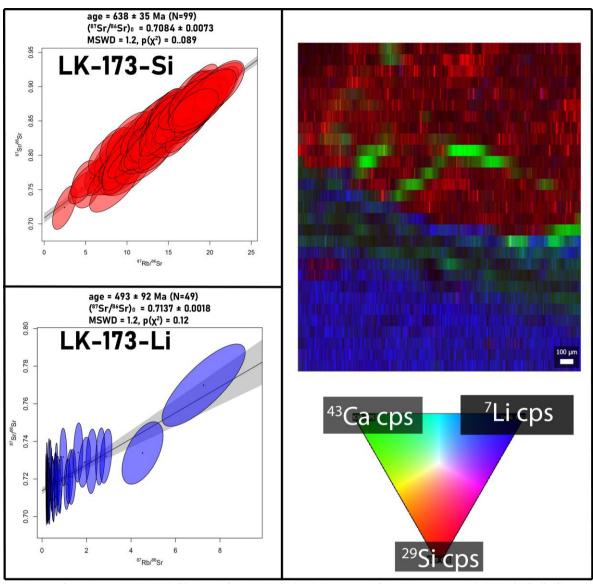



Isochrons for phase MP02-556-Si (top left), MP02-556-Fe (bottom left) with ages and initial  $^{87}$ Sr/ $^{86}$ Sr along with associated  $2\sigma$  errors ( $2\sigma$  quoted) and mean square weighted deviation (MSWD) and (right) ternary map of their pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.

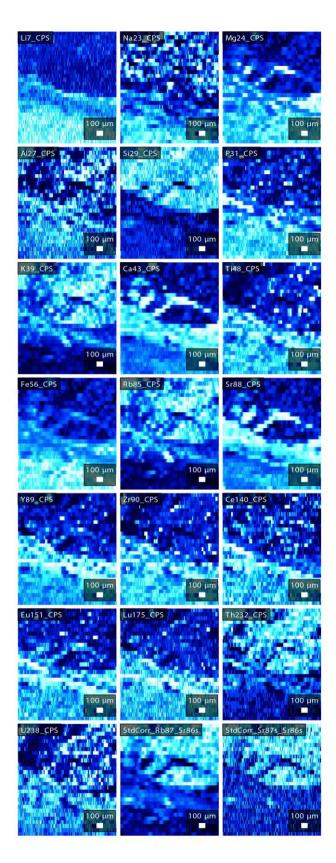


Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample MP02-556. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.

#### APPENDIX 10: SAMPLE LK12-173

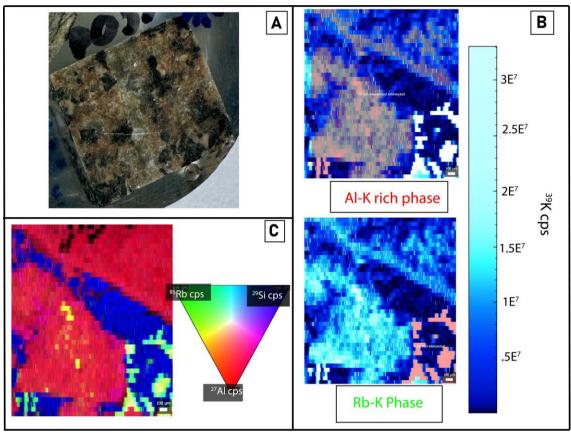



A- Sample LLK-173 mounted in epoxy; B- Two distinct pixel maps for phases (Si-Al rich phase & Li-P intrusion) present in sample LLK-173 (red regions) overlain on <sup>29</sup>Si concentration map (left) and <sup>29</sup>Si scale (right); C- The two distinct phases in B compiled into one ternary diagram showing their respective spatial locations relative to each other.


LA-ICP-MS analysis of this sample returned three clear phases in this chip. The Si-Al rich phase, a Li-P rich intrusive phase and a Ca-rich phase which sits at the contact between the two others. The Ca-rich phase has not been included in this analysis as it is a carbonate and therefore unsuitable for this technique.

The Si-Al rich phase (LLK-173-Si) returned an age of  $638 \pm 35$  Ma ( $2\sigma$  error) and an initial  $^{87}$ Sr/ $^{86}$ Sr of  $0.7084 \pm 0.0073$  from 99 analytical points (Figure \*\*).

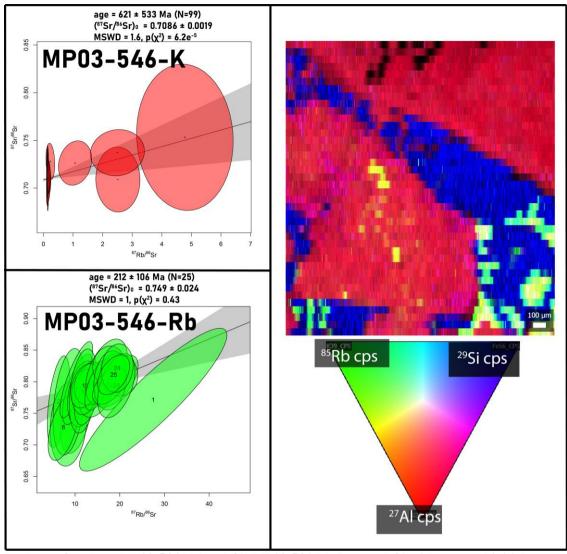
The Li-P rich phase (LLK-173-Li) returned an age of  $493 \pm 92$  Ma ( $2\sigma$  error) and an initial  $^{87}Sr/^{86}Sr$  of  $0.7137 \pm 0.0018$  from 49 analytical points (Figure \*\*



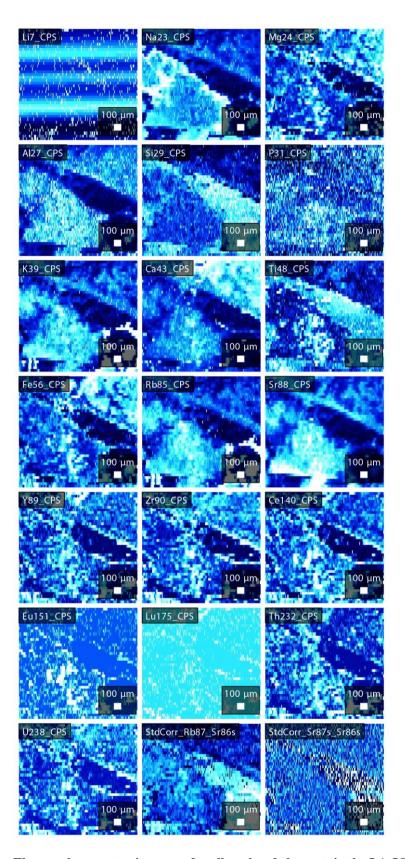

Isochrons for phase LLK-173-Si (top left), LLK-173-Li (bottom left) with ages and initial 87Sr/86Sr along with associated  $2\sigma$  errors ( $2\sigma$  quoted) and mean square weighted deviation (MSWD) and (right) ternary map of their pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.



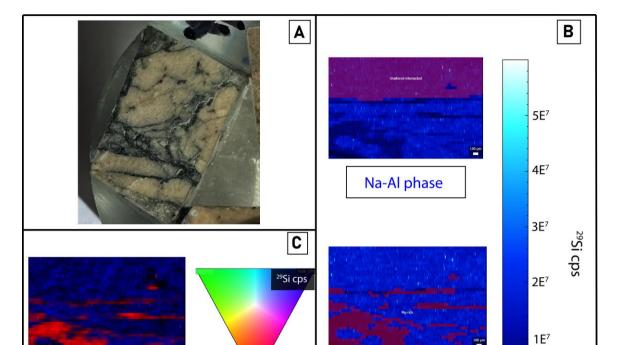
Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample LLK-173. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.


### **APPENDIX 11: MP03-546**




A- Sample MP03-546 mounted in epoxy; B- Two distinct pixel maps for phases (Al-K rich phase & Rb-K phase) present in sample MP03-546 (red regions) overlain on <sup>39</sup>K concentration map (left) and <sup>39</sup>K scale (right); C- The two distinct phases in B compiled into one ternary diagram showing their respective spatial locations relative to each other.

LA-ICP-MS analysis of this sample revealed two clear phases. Phase one is dominated by high Al and K concentrations and sits dominantly on the left of the analysed region (Figure \*\*, B). The second phase is minor and contains elevated Rb and K concentrations while compared to phase one but significantly less Fe and Na (Figure \*\*, B).


Phase one (MP03-546-K) returned an age of  $621 \pm 533$  Ma ( $2\sigma$  error) and an  $^{87}$ Sr/ $^{86}$ Sr ratio of  $0.7086 \pm 0.0019$  from 99 analytical points (Figure \*\*). Phase two (MP03-546-Rb) returned an age of  $212 \pm 106$  Ma ( $2\sigma$  error) and an  $^{87}$ Sr/ $^{86}$ Sr ratio of  $0.749 \pm 0.024$  from 25 analytical points (Figure \*\*).

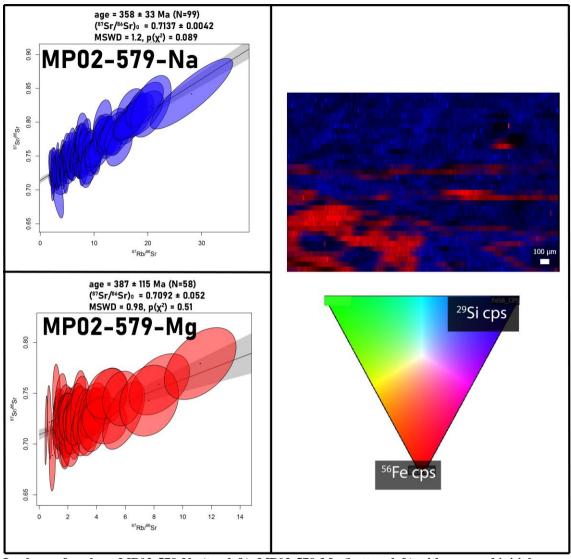


Isochrons for phase MP03-546-K (top left), MP03-546-Rb (bottom left) with ages and initial 87Sr/86Sr along with associated  $2\sigma$  errors ( $2\sigma$  quoted) and mean square weighted deviation (MSWD) and (right) ternary map of their pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.

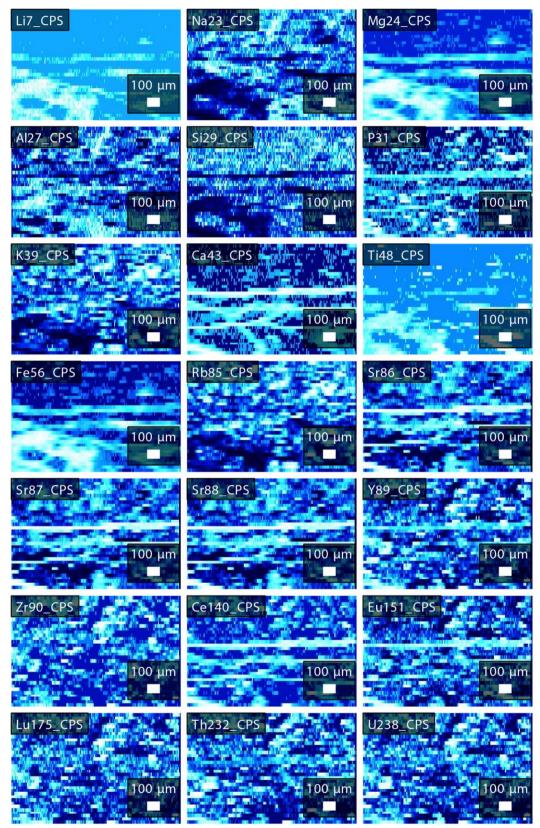


Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample LLK-173. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.




#### **APPENDIX 12: SAMPLE MP02-579**

A- Sample MP02-579 mounted in epoxy; B- Two distinct pixel maps for phases (Na-Al rich phase & Mg- Li phase) present in sample MP02-579 (red regions) overlain on <sup>29</sup>Si concentration map (left) and <sup>29</sup>Si scale (right); C- The two distinct phases in B compiled into one ternary diagram showing their respective spatial locations relative to each other.


Mg-Li phase

LA-ICP-MS analysis of this sample revealed two clear phases. Phase one is dominated by high Na and Al concentrations and dominates the analysed region (Figure \*\*, B). The second phase is minor and vein-like and contains elevated Mg, Li & Fe concentrations while compared to phase one (Figure \*\*, B).

Phase one (MP02-579-Na) returned an age of  $358 \pm 33$  Ma ( $2\sigma$  error) and an initial  $^{87}\text{Sr}/^{86}\text{Sr}$  of  $0.7137 \pm 0.0042$  from 99 analytical points (figure \*\*). Phase two (MP02-579-Mg) returned an age of  $387 \pm 115$  Ma ( $2\sigma$  error) and an initial  $^{87}\text{Sr}/^{86}\text{Sr}$  of  $0.7092 \pm 0.0052$  from 58 analytical points (Figure \*\*).



Isochrons for phase MP02-579-Na (top left), MP02-579-Mg (bottom left) with ages and initial  $^{87} Sr/^{86} Sr$  along with associated  $2\sigma$  errors ( $2\sigma$  quoted) and mean square weighted deviation (MSWD) and (right) ternary map of their pixel regions which each isochron was analysed from. Each isoplot is colour coded to its colour in the ternary map.



Elemental concentration maps for all analysed elements in the LA-ICP-MS Rb-Sr method for sample MP02-579. Maps were used for the purpose of determining mineral phases in chip samples. Each map name is the element and atomic mass value for that sample. White colour responds to higher concentration of an element and blue is a lower concentration.

# APPENDIX 13: PARAMETERS FOR DATA ACQUISITION OF RB-SR SHALE & ILLITE LA-ICP-MS SPOT ANALYSIS.

| Sample ID | Sample Target | Date of    | Spot Size | # of spots |
|-----------|---------------|------------|-----------|------------|
|           |               | session    | (µm)      |            |
| LLK11-323 | Illite        | 05/08/2024 | 67        | 60         |
| LLK11-369 | Illite        | 05/08/2024 | 67        | 65         |
| LLK12-186 | Illite        | 05/08/2024 | 67        | 60         |
| LLK14-361 | Illite        | 05/08/2024 | 67        | 60         |
| LLK14-379 | Illite        | 05/08/2024 | 67        | 60         |
| MP02556   | Mica          | 05/08/2024 | 67        | 80         |
| MP02628   | Mica          | 05/08/2024 | 67        | 59         |
| MP03493   | Mica          | 05/08/2024 | 67        | 60         |
| MP03548   | Mica          | 05/08/2024 | 67        | 60         |

### APPENDIX 14: SOLUTION ICP-MS GEOCHEMICAL DATA

| Elements |             |            |            |            |            |             | JT1 (USGS   | USGS values (Flanagan, |  |
|----------|-------------|------------|------------|------------|------------|-------------|-------------|------------------------|--|
| (ppm)    | LK12A       | LK12B      | MP2A       | MP2B       | МРЗА       | <b>МРЗВ</b> | G2)         | 1976)                  |  |
| Li       | 35.5677     | 61.9219    | 7.6745     | 15.6264    | 31.4064    | 14.7099     | 31.5117     | 33.6                   |  |
| Ве       | 1.967       | 2.4808     | 3.076      | 3.3048     | 2.6        | 2.4134      | 2.8608      | 2.486                  |  |
| Na       | 8423.1527   | 10334.9015 | 28468.403  | 18973.1346 | 16836.8593 | 16251.238   | 29922.6747  |                        |  |
| Mg       | 42271.31062 | 31780.1307 | 1670.2773  | 1626.492   | 13919.0849 | 13675.1816  | 4746.2371   |                        |  |
| Al       | 62705.5544  | 53507.5752 | 72873.5148 | 83875.6126 | 93296.6539 | 91258.4258  | 101981.5081 |                        |  |
| Р        | 1935.6181   | 2269.0829  | 244.1467   | 202.6064   | 709.5296   | 711.4409    | 814.4195    |                        |  |
| K        | 4243.9063   | 13523.7482 | 43555.9502 | 46254.2824 | 30126.4982 | 30111.656   | 50968.6181  |                        |  |
| Ca       | 62964.1801  | 41148.6865 | 7147.2994  | 20195.4057 | 39332.3219 | 34881.6791  | 16683.7496  |                        |  |
| Sc       | 16.456      | 11.8855    | 10.1418    | 11.8417    | 21.2636    | 21.1734     | 4.7336      | 3.66                   |  |
| Ti       | 8937.4028   | 10143.4314 | 1364.1771  | 1380.0209  | 3433.5083  | 3533.3888   | 3022.9607   |                        |  |
| V        | 199.7527    | 225.4343   | 5.6217     | 3.9615     | 111.3374   | 111.4445    | 30.3812     | 35.1                   |  |
| Cr       | 234.4081    | 212.3362   | 1.3256     | 0.6722     | 41.3687    | 30.6049     | 6.7113      | 7.88                   |  |
| Mn       | 920.6204    | 1068.4938  | 250.5638   | 230.5135   | 687.0857   | 773.0966    | 231.4935    |                        |  |
| Fe       | 56293.4532  | 77812.6008 | 13392.2486 | 15578.4205 | 37633.1177 | 39085.1855  | 17076.2623  |                        |  |
| Со       | 41.4336     | 36.8915    | 26.598     | 43.3868    | 31.2588    | 37.3692     | 3.9456      | 4.478                  |  |
| Ni       | 117.8729    | 99.3349    | 0.5779     | 0.5877     | 9.5357     | 9.641       | 1.7796      | 3.46                   |  |
| Cu       | 41.1262     | 37.5144    | 12.9069    | 10.5837    | 14.8752    | 12.2379     | 8.0991      | 10.98                  |  |
| Zn       | 61.6342     | 36.8954    | 43.702     | 33.0265    | 64.978     | 66.7295     | 78.7215     | 83.5                   |  |
| Ga       | 13.8343     | 16.0293    | 12.9601    | 15.2494    | 16.3856    | 16.1103     | 21.6124     | 23.32                  |  |
| Rb       | 12.2742     | 49.9574    | 125.8896   | 134.559    | 102.8944   | 90.6363     | 165.1225    | 168.5                  |  |
| Sr       | 336.5344    | 103.391    | 117.1976   | 195.7986   | 216.8866   | 211.2115    | 467.7368    | 474.9                  |  |
| Υ        | 18.1976     | 18.5393    | 26.2778    | 27.9703    | 20.2517    | 20.5247     | 8.7805      | 9.88                   |  |
| Zr       | 141.0835    | 177.6584   | 278.4706   | 305.7485   | 149.9386   | 148.2102    | 339.7257    | 319                    |  |
| Nb       | 12.4683     | 13.5377    | 11.1939    | 11.39      | 9.2426     | 9.6698      | 10.0849     | 12.02                  |  |
| Мо       | 0.7376      | 0.736      | 0.3743     | 0.8189     | 0.8265     | 0.4748      | 0.239       | 0.38                   |  |
| Cd       | 0.08        | 0.0429     | 0.0756     | 0.069      | 0.0648     | 0.0648      | 0.0583      | 0.08                   |  |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|    |          | _        |          |           | -        | -        |           | Constraining the in |
|----|----------|----------|----------|-----------|----------|----------|-----------|---------------------|
| Sn | 1.1738   | 1.3978   | 1.4526   | 2.0517    | 3.3108   | 2.8843   | 1.6326    | 1.72                |
| Sb | 0.1942   | 0.347    | 1.0483   | 1.2687    | 0.0538   | 0.1547   | 0.0502    | 0.058               |
| Cs | 12.1356  | 5.1927   | 2.2769   | 3.5846    | 5.9307   | 4.5865   | 1.3439    | 1.357               |
| Ва | 243.6469 | 120.0071 | 657.5667 | 1154.5365 | 557.0279 | 626.9163 | 1956.8329 | 1860                |
| La | 26.5016  | 28.1526  | 40.8557  | 43.6908   | 34.7182  | 41.8356  | 93.3544   | 88.4                |
| Ce | 63.6754  | 70.8996  | 78.0558  | 86.5453   | 70.9407  | 80.8666  | 170.7051  | 161.2               |
| Pr | 7.7577   | 8.8724   | 9.0319   | 9.6725    | 7.6186   | 8.4713   | 16.4386   | 16.88               |
| Nd | 31.4377  | 36.5601  | 33.6835  | 36.5586   | 27.9719  | 30.4742  | 53.2173   | 53.81               |
| Sm | 6.1654   | 7.1773   | 7.0705   | 7.5373    | 5.6446   | 5.9157   | 7.6867    | 7.19                |
| Eu | 1.6138   | 1.7185   | 1.0483   | 1.225     | 1.0567   | 1.0525   | 1.3107    | 1.414               |
| Gd | 5.3077   | 6.0027   | 6.1146   | 6.6251    | 4.875    | 5.0612   | 4.9147    | 4.23                |
| Tb | 0.761    | 0.85     | 0.9587   | 1.0045    | 0.7387   | 0.7372   | 0.5325    | 0.495               |
| Dy | 4.2969   | 4.8612   | 5.6684   | 5.8635    | 4.2938   | 4.2674   | 2.2592    | 2.278               |
| Но | 0.8323   | 0.9943   | 1.1454   | 1.1783    | 0.8384   | 0.8516   | 0.3756    | 0.3725              |
| Er | 2.3699   | 2.8902   | 3.4008   | 3.4874    | 2.4973   | 2.522    | 1.0534    | 0.927               |
| Tm | 0.321    | 0.3987   | 0.491    | 0.4896    | 0.3519   | 0.3575   | 0.1273    | 0.1232              |
| Yb | 2.0314   | 2.5549   | 3.1964   | 3.2475    | 2.3149   | 2.3682   | 0.7782    | 0.722               |
| Lu | 0.2937   | 0.3831   | 0.4817   | 0.5051    | 0.3559   | 0.3547   | 0.1085    | 0.1019              |
| Hf | 3.5857   | 4.2734   | 8.1002   | 8.4368    | 4.4483   | 4.4211   | 8.9033    | 7.78                |
| Та | 1.0674   | 0.9368   | 1.2341   | 1.5572    | 1.2791   | 1.4734   | 0.6222    | 0.834               |
| Tl | 0.2966   | 0.4192   | 1.0689   | 0.7509    | 0.7317   | 0.5978   | 0.8786    | 0.884               |
| Pb | 8.1616   | 6.1382   | 26.8799  | 25.0618   | 21.0123  | 21.1907  | 30.7533   | 30                  |
| Bi | 0.0381   | 0.0507   | 0.2007   | 0.0408    | 5.2877   | 0.0903   | 0.0377    | 0.034               |
| Th | 2.087    | 1.8199   | 17.3458  | 18.0675   | 14.3867  | 15.7681  | 25.7758   | 24.54               |
| U  | 0.7025   | 1.3764   | 6.052    | 4.2179    | 1.951    | 2.621    | 1.8845    | 1.964               |
|    |          |          |          |           |          |          |           |                     |

### APPENDIX 15: RAW DATA FROM RB-SR LA-ICP-MS SPOT ANALYSIS OF SHALES AND INTRUSIONS

|       |          |              |                    |              |            |              |                        |            |             | Corrected   |      |
|-------|----------|--------------|--------------------|--------------|------------|--------------|------------------------|------------|-------------|-------------|------|
| ALnum | Sample   | Analysis     | Rb87Sr86           | Rb87Sr86_2SE | Sr87Sr86   | Sr87Sr86_2SE | Rho_Rb87Sr86_Sr87Sr86] | Comment    | Corrected   | 2se         | omit |
| 8     | LLK11323 | LLK11323-001 | 4.792864788622850  | 0.221958533  | 0.74876048 | 0.012958013  | 0.136252657            | zr inc     | 4.357730409 | 0.204090405 |      |
| 9     | LLK11323 | LLK11323-002 | 4.364070815633300  | 0.295881448  | 0.73710656 | 0.015644067  | 0.45464903             | zr inc     | 3.967865763 | 0.270443145 |      |
| 10    | LLK11323 | LLK11323-003 | 3.204356966193770  | 0.107663379  | 0.73272036 | 0.008507302  | 0.157315567            | high y     | 2.913439959 | 0.099982173 |      |
| 11    | LLK11323 | LLK11323-004 | 9.376589253331270  | 0.351610669  | 0.76651328 | 0.017381384  | 0.538483256            | zr inc     | 8.525307917 | 0.325188512 |      |
| 12    | LLK11323 | LLK11323-005 | 3.383587499569820  | 0.177085779  | 0.73323387 | 0.01075002   | 0.475334628            | zr/y def   | 3.076398519 | 0.162436408 |      |
| 13    | LLK11323 | LLK11323-006 | 2.101348414412910  | 0.161960573  | 0.73022712 | 0.006966141  | 0.185927333            |            | 1.910571295 | 0.147860093 |      |
| 14    | LLK11323 | LLK11323-007 | 0.935996217        | 0.02058685   | 0.714843   | 0.004045376  | 0.138844389            |            | 0.851019037 | 0.019639199 |      |
| 15    | LLK11323 | LLK11323-008 | 4.415493334191120  | 0.066043508  | 0.74673602 | 0.010141847  | 0.048810357            |            | 4.014619737 | 0.066273716 |      |
| 22    | LLK11323 | LLK11323-009 | 7.761676817823520  | 0.50224261   | 0.77411212 | 0.014712322  | 0.237529603            |            | 7.057010074 | 0.459298299 |      |
| 23    | LLK11323 | LLK11323-011 | 0.714422361        | 0.085054478  | 0.72137115 | 0.005800878  | -0.008677774           |            | 0.649561418 | 0.077465566 |      |
| 24    | LLK11323 | LLK11323-012 | 2.700489579159970  | 0.164835379  | 0.73595101 | 0.008891585  | 0.263361565            | zr peak    | 2.45531766  | 0.150848592 |      |
| 25    | LLK11323 | LLK11323-013 | 3.972853068385540  | 0.080292857  | 0.74064808 | 0.008147382  | 0.420255478            | zr/ce peak | 3.612165874 | 0.077241081 |      |
| 26    | LLK11323 | LLK11323-014 | 8.404525751609730  | 0.241471217  | 0.77170965 | 0.020900913  | 0.602662223            | zr peak    | 7.64149607  | 0.225944764 |      |
| 27    | LLK11323 | LLK11323-015 | 4.183722304611360  | 0.078606053  | 0.73970238 | 0.010873009  | 0.232848909            |            | 3.803890724 | 0.076249565 |      |
| 28    | LLK11323 | LLK11323-016 | 0.348353205        | 0.024606715  | 0.71707372 | 0.005947732  | 0.054447056            | zr inc     | 0.316726931 | 0.022481859 |      |
| 29    | LLK11323 | LLK11323-017 | 0.47332625         | 0.015582812  | 0.71247994 | 0.009630109  | 0.188247806            | zr peak    | 0.430353929 | 0.014483517 |      |
| 30    | LLK11323 | LLK11323-018 | 6.533930832604330  | 0.153681657  | 0.75700439 | 0.016530464  | 0.241380329            | zr inc     | 5.940728633 | 0.145761686 |      |
| 31    | LLK11323 | LLK11323-019 | 5.031445678067140  | 0.096885294  | 0.75782282 | 0.009443938  | 0.162494385            | y drop     | 4.574651028 | 0.093706733 |      |
| 32    | LLK11323 | LLK11323-020 | 3.080942180288790  | 0.195410985  | 0.73874393 | 0.009809029  | 0.235485321            | zr inc     | 2.801229749 | 0.178744383 |      |
| 33    | LLK11323 | LLK11323-021 | 3.223271384065880  | 0.131330163  | 0.73001105 | 0.008781015  | 0.186608245            | zr peaks   | 2.930637176 | 0.121149237 |      |
| 34    | LLK11323 | LLK11323-022 | 7.911807788860590  | 0.311720718  | 0.76891332 | 0.012394382  | 0.510799997            | zr peak    | 7.193510962 | 0.28784057  |      |
| 35    | LLK11323 | LLK11323-023 | 2.241069087162260  | 0.065762447  | 0.72908368 | 0.010740064  | 0.192708281            | P peak     | 2.037607014 | 0.061462906 |      |
| 36    | LLK11323 | LLK11323-024 | 7.879481919224020  | 0.325314189  | 0.76852154 | 0.009858034  | 0.152595492            | ree peak   | 7.164119892 | 0.299983556 |      |
| 37    | LLK11323 | LLK11323-025 | 4.262434954616990  | 0.16533861   | 0.74301291 | 0.006859671  | 0.21107849             | zr peak    | 3.875457214 | 0.152746129 |      |
| 38    | LLK11323 | LLK11323-026 | 9.427339839696700  | 0.138268175  | 0.77818081 | 0.009186461  | 0.303394025            | zr peak    | 8.571450961 | 0.139246228 |      |
| 39    | LLK11323 | LLK11323-027 | 7.823428680236400  | 0.251265689  | 0.7604555  | 0.009037256  | 0.425074986            | zr peaks   | 7.113155611 | 0.233795212 |      |
| 40    | LLK11323 | LLK11323-028 | 3.953757834770700  | 0.100366437  | 0.74241171 | 0.008198437  | 0.102775186            | zr drop    | 3.594804258 | 0.094646539 |      |
| 41    | LLK11323 | LLK11323-029 | 10.349831309316400 | 0.375066503  | 0.78376856 | 0.012556931  | 0.232871793            | y peak     | 9.410191319 | 0.347292997 |      |
| 42    | LLK11323 | LLK11323-030 | 4.346539754161660  | 0.082692551  | 0.74373589 | 0.013995741  | 0.564612683            | y drop     | 3.951926311 | 0.080093184 |      |
| 43    | LLK11323 | LLK11323-031 | 2.328907028007460  | 0.056993578  | 0.72435102 | 0.012750036  | 0.192296888            | zr peaks   | 2.117470328 | 0.053889072 |      |
|       |          |              |                    |              | 106        |              |                        |            |             |             |      |

Matthew Robert Barnett Constraining the hidden Delamerian margin

| 44  | LLK11323 | LLK11323-032 | 2.361648880083600  | 0.073556175 | 0.73234327 | 0.006261291 | 0.13795001   |                  | 2.147239615 | 0.068539634 |
|-----|----------|--------------|--------------------|-------------|------------|-------------|--------------|------------------|-------------|-------------|
| 45  | LLK11323 | LLK11323-033 | 12.756520197442600 | 0.268307212 | 0.79322675 | 0.016507875 | 0.503130099  | z/y peak         | 11.59838185 | 0.257051004 |
| 46  | LLK11323 | LLK11323-034 | 4.437925628432220  | 0.118754961 | 0.75507889 | 0.013505641 | 0.083033767  | zr peak          | 4.035015449 | 0.111591991 |
| 49  | LLK11323 | LLK11323-035 | 5.979236326091040  | 0.14428339  | 0.7594626  | 0.012453926 | -0.133447299 | y peaks          | 5.436393704 | 0.136570524 |
| 50  | LLK11323 | LLK11323-036 | 5.289894179894560  | 0.069461631 | 0.75422603 | 0.013344991 | 0.286409403  | z/y variance     | 4.80963552  | 0.071536274 |
| 52  | LLK11323 | LLK11323-039 | 2.454690275641160  | 0.058231406 | 0.729294   | 0.015542321 | 0.343292031  | y drop           | 2.231833972 | 0.055192491 |
| 53  | LLK11323 | LLK11323-040 | 5.536192600306240  | 0.258791515 | 0.75895678 | 0.01317628  | 0.207649817  | y drop           | 5.033573011 | 0.237909193 |
| 54  | LLK11323 | LLK11323-041 | 3.439528020153110  | 0.179921786 | 0.73326334 | 0.010922727 | 0.232047764  | z peak/y<br>drop | 3.127260315 | 0.16503928  |
| 55  | LLK11323 | LLK11323-042 | 7.292037835013830  | 0.226546596 | 0.75838033 | 0.010052581 | 0.202617741  | y drop           | 6.630008653 | 0.211121646 |
| 56  | LLK11323 | LLK11323-043 | 8.898780568011970  | 0.45389358  | 0.76570802 | 0.016502689 | 0.493798364  | zr peak          | 8.090878503 | 0.416537881 |
| 57  | LLK11323 | LLK11323-044 | 6.192070584202400  | 0.110651983 | 0.76012436 | 0.010486608 | 0.281106144  | y drop           | 5.629905176 | 0.108019931 |
| 58  | LLK11323 | LLK11323-045 | 1.593001942040690  | 0.021574802 | 0.72524867 | 0.009311834 | 0.200613692  |                  | 1.448376558 | 0.022071697 |
| 59  | LLK11323 | LLK11323-046 | 3.449205455056650  | 0.134597082 | 0.73995456 | 0.009178482 | 0.114016208  | z peak           | 3.136059155 | 0.124322682 |
| 60  | LLK11323 | LLK11323-047 | 4.992676687823950  | 0.395382387 | 0.74437074 | 0.01229248  | 0.22653764   | Y drop           | 4.539401795 | 0.360882317 |
| 61  | LLK11323 | LLK11323-048 | 4.187457466125920  | 0.174378102 | 0.74298962 | 0.00757408  | 0.322838945  |                  | 3.807286778 | 0.160761952 |
| 66  | LLK11323 | LLK11323-049 | 5.965049054821770  | 0.168034167 | 0.75381426 | 0.012402923 | 0.384453641  | y spike          | 5.423494467 | 0.157406183 |
| 67  | LLK11323 | LLK11323-050 | 6.528113604568660  | 0.247382541 | 0.75602773 | 0.008772184 | 0.307351758  |                  | 5.935439539 | 0.228712899 |
| 68  | LLK11323 | LLK11323-051 | 2.588815427460200  | 0.099052    | 0.72845254 | 0.010737591 | 0.190659878  | z peak           | 2.353782176 | 0.091547973 |
| 69  | LLK11323 | LLK11323-052 | 7.735812171839510  | 0.130828756 | 0.76772954 | 0.013845821 | 0.280638162  | y peak           | 7.033493626 | 0.128698999 |
| 70  | LLK11323 | LLK11323-053 | 2.288138686773030  | 0.049475771 | 0.72843406 | 0.010539068 | 0.179654845  | z/y drop         | 2.080403261 | 0.047273267 |
| 72  | LLK11323 | LLK11323-055 | 2.480340906764390  | 0.102335803 | 0.739206   | 0.014287531 | 0.317288784  | ree drops        | 2.255155835 | 0.094369162 |
| 73  | LLK11323 | LLK11323-056 | 4.223174983108750  | 0.141253712 | 0.74030253 | 0.010577206 | 0.472823107  | z spikes         | 3.839761575 | 0.131200735 |
| 74  | LLK11323 | LLK11323-057 | 4.558198565463160  | 0.06229216  | 0.74779093 | 0.007717695 | 0.291574621  | y drop           | 4.144369052 | 0.063607242 |
| 75  | LLK11323 | LLK11323-058 | 3.134089047262290  | 0.082183498 | 0.74216815 | 0.012441983 | 0.216248706  | ree drops        | 2.849551521 | 0.07732822  |
| 76  | LLK11323 | LLK11323-059 | 4.067650400839680  | 0.145439642 | 0.73504034 | 0.013379631 | 0.063699856  | zr inc           | 3.698356751 | 0.134735598 |
| 77  | LLK11323 | LLK11323-060 | 2.238629521218850  | 0.057452132 | 0.72887611 | 0.007440167 | 0.308501428  |                  | 2.035388931 | 0.054136689 |
| 288 | LLK11369 | LLK11369-001 | 3.754933727763620  | 0.174620478 | 0.74246893 | 0.009151351 | 0.468723483  | P peak           | 3.414030984 | 0.160548285 |
| 289 | LLK11369 | LLK11369-002 | 5.556850532195630  | 0.601836469 | 0.75245896 | 0.009709756 | 0.524934279  | y drop           | 5.052355452 | 0.548333997 |
| 290 | LLK11369 | LLK11369-003 | 4.776344298467190  | 0.097518653 | 0.75427169 | 0.009679585 | 0.255144086  | Y peaks          | 4.342709781 | 0.093711294 |
| 291 | LLK11369 | LLK11369-004 | 5.066229275436510  | 0.51794884  | 0.75281818 | 0.0085445   | 0.373242752  | y peak           | 4.606276694 | 0.47202337  |
| 292 | LLK11369 | LLK11369-005 | 5.646373366400730  | 0.858745958 | 0.75115172 | 0.011029596 | 0.456290069  | y peak/zr dip    | 5.133750691 | 0.78160534  |
| 293 | LLK11369 | LLK11369-006 | 6.337429757481310  | 0.17112808  | 0.7646101  | 0.012437695 | 0.360542044  | P peak           | 5.762067488 | 0.160713928 |

|     |          |              |                    |             |            |             |              | Cons                 | danning the n | idden Delamen |
|-----|----------|--------------|--------------------|-------------|------------|-------------|--------------|----------------------|---------------|---------------|
| 294 | LLK11369 | LLK11369-007 | 3.567410591485390  | 0.194576182 | 0.73160329 | 0.009230662 | 0.288735663  | z peak               | 3.243532689   | 0.178356081   |
| 295 | LLK11369 | LLK11369-008 | 2.887105163723120  | 0.143897649 | 0.73237038 | 0.007425319 | 0.28813967   | y peak               | 2.624990798   | 0.132112261   |
| 300 | LLK11369 | LLK11369-009 | 4.143337034849940  | 0.646433595 | 0.74004585 | 0.00923047  | 0.475514638  | Ree spike            | 3.76717195    | 0.58833406    |
| 301 | LLK11369 | LLK11369-010 | 6.914325960654680  | 0.196873971 | 0.75986785 | 0.011815459 | 0.477199462  | Y peaks              | 6.286588466   | 0.18430857    |
| 304 | LLK11369 | LLK11369-011 | 12.798782013775700 | 0.489774171 | 0.80932594 | 0.010891751 | 0.662634182  | Z inc                | 11.6368068    | 0.452667445   |
| 305 | LLK11369 | LLK11369-012 | 2.969719924785890  | 0.407730573 | 0.73735305 | 0.007864968 | 0.441373593  | zr peaks             | 2.700105134   | 0.371193084   |
| 306 | LLK11369 | LLK11369-014 | 4.971953752812930  | 0.542872917 | 0.75444776 | 0.011937741 | -0.01609554  | Y peaks              | 4.520560253   | 0.494595746   |
| 307 | LLK11369 | LLK11369-015 | 2.780905451383610  | 0.198576031 | 0.73317235 | 0.006876801 | 0.307436916  | Y spike              | 2.52843274    | 0.181409613   |
| 308 | LLK11369 | LLK11369-016 | 5.668463016166750  | 0.223969543 | 0.75196534 | 0.011770761 | 0.160814843  | Y peak               | 5.153834867   | 0.206793939   |
| 309 | LLK11369 | LLK11369-017 | 8.527303315080720  | 0.60404817  | 0.7855694  | 0.013283435 | 0.205996806  | Z spikes             | 7.75312691    | 0.551871928   |
| 310 | LLK11369 | LLK11369-018 | 10.501914309662600 | 0.751612231 | 0.79287157 | 0.016428609 | 0.028091331  | Z peak               | 9.548467016   | 0.686622445   |
| 311 | LLK11369 | LLK11369-019 | 3.635412406082760  | 0.172299329 | 0.74545858 | 0.009319601 | 0.432448328  | Z peak               | 3.305360758   | 0.15834912    |
| 312 | LLK11369 | LLK11369-020 | 2.956553294415930  | 0.248246508 | 0.73644412 | 0.009024994 | 0.164519624  | zr inc               | 2.688133875   | 0.226488513   |
| 313 | LLK11369 | LLK11369-021 | 4.950867844189240  | 0.632278056 | 0.76103789 | 0.01031516  | 0.50588731   | Y spikes             | 4.501388691   | 0.575734183   |
| 314 | LLK11369 | LLK11369-022 | 3.856414814629740  | 0.118638334 | 0.7422717  | 0.011779913 | 0.446430265  |                      | 3.506298811   | 0.110613354   |
| 315 | LLK11369 | LLK11369-023 | 2.530107559270740  | 0.107087417 | 0.72649032 | 0.00892408  | 0.201874004  | Z/P peaks<br>Z       | 2.300404275   | 0.09868238    |
| 316 | LLK11369 | LLK11369-024 | 5.233691252956720  | 0.379085453 | 0.74324669 | 0.01098007  | 0.132956196  | fluctuations         | 4.758535142   | 0.34626831    |
| 317 | LLK11369 | LLK11369-025 | 1.631012513352670  | 0.156874656 | 0.73135097 | 0.008141217 | 0.040446427  | Y spike              | 1.482936227   | 0.143008021   |
| 318 | LLK11369 | LLK11369-026 | 1.932365636658530  | 0.214003049 | 0.73553716 | 0.007097415 | 0.079924444  | Y peak               | 1.756930118   | 0.194960847   |
| 319 | LLK11369 | LLK11369-027 | 2.435023215069350  | 0.093269989 | 0.72935198 | 0.007868829 | -0.156149028 | Y/Zr peak            | 2.213952444   | 0.086200949   |
| 320 | LLK11369 | LLK11369-028 | 3.775197035574590  | 0.26810325  | 0.73821685 | 0.009202932 | 0.39410269   | Z inc                | 3.432454628   | 0.244939155   |
| 321 | LLK11369 | LLK11369-029 | 2.199621462892730  | 0.156028556 | 0.73137036 | 0.006798044 | 0.133132958  | Y spike              | 1.999922335   | 0.142549298   |
| 322 | LLK11369 | LLK11369-030 | 3.532602868313280  | 0.209752344 | 0.73608654 | 0.009130815 | 0.32929513   | Y dip                | 3.211885088   | 0.192024677   |
| 323 | LLK11369 | LLK11369-031 | 2.000838098934330  | 0.137620911 | 0.73465693 | 0.006693404 | 0.329810597  | Z inc                | 1.819186105   | 0.125770266   |
| 324 | LLK11369 | LLK11369-032 | 1.060871492832920  | 0.056496062 | 0.71948347 | 0.005349502 | 0.214390385  | P spike              | 0.964557142   | 0.051806943   |
| 325 | LLK11369 | LLK11369-033 | 1.439710234604930  | 0.019522816 | 0.72745074 | 0.006954703 | 0.172987299  | Zr spikes            | 1.309001891   | 0.019967269   |
| 327 | LLK11369 | LLK11369-035 | 2.441333724418680  | 0.293117613 | 0.73406068 | 0.007346383 | 0.312339762  | Y spike              | 2.219690035   | 0.266956766   |
| 328 | LLK11369 | LLK11369-036 | 2.772972930888570  | 0.153121094 | 0.73449956 | 0.008832779 | 0.153560339  | Ree spike<br>Zr      | 2.521220397   | 0.140329158   |
| 329 | LLK11369 | LLK11369-037 | 0.605301001        | 0.034959117 | 0.72242492 | 0.008465528 | 0.042109161  | fluctuation          | 0.550346963   | 0.032016908   |
| 330 | LLK11369 | LLK11369-038 | 3.380622142814290  | 0.188750886 | 0.73955598 | 0.007449451 | 0.30911915   | Y peaks<br>P peak/ Y | 3.073702381   | 0.172952585   |
| 331 | LLK11369 | LLK11369-039 | 8.202997189128250  | 0.283875492 | 0.7768759  | 0.013787467 | 0.461256724  | peak                 | 7.458263873   | 0.263308998   |
| 332 | LLK11369 | LLK11369-040 | 3.057202943609360  | 0.167476171 | 0.7344955  | 0.008462883 | 0.072749518  | Zr inc               | 2.779645749   | 0.153504412   |
|     |          |              |                    |             |            |             |              |                      |               |               |

Matthew Robert Barnett Constraining the hidden Delamerian margin

| 335 | LLK11369  | LLK11369-041  | 8.460480403657390  | 0.689312128       | 0.7683352  | 0.009405852 | 0.311245663  | Zr spikes                       | 7.692370713 | 0.629030328 |   |
|-----|-----------|---------------|--------------------|-------------------|------------|-------------|--------------|---------------------------------|-------------|-------------|---|
| 336 | LLK11369  | LLK11369-042  | 2.282512416246430  | 0.445969413       | 0.723647   | 0.008093867 | 0.572345576  | Z peak                          | 2.075287788 | 0.405739838 |   |
| 337 | LLK11369  | LLK11369-043  | 2.155046595082890  | 0.118998439       | 0.72673503 | 0.007855018 | 0.114417863  | Y peak                          | 1.959394328 | 0.109057173 |   |
| 338 | LLK11369  | LLK11369-044  | 1.745592425436490  | 0.072125994       | 0.73091766 | 0.008254173 | 0.302602456  | Zr<br>fluctuation<br>Z spike/ Y | 1.587113664 | 0.06650843  |   |
| 339 | LLK11369  | LLK11369-045  | 4.418988756764860  | 0.209373365       | 0.74811913 | 0.00800803  | 0.23769303   | spike                           | 4.017797817 | 0.192422697 |   |
| 340 | LLK11369  | LLK11369-046  | 4.941922619071430  | 0.075175561       | 0.74757564 | 0.010210002 | 0.587940268  | Ce spike                        | 4.493255585 | 0.075213083 |   |
| 341 | LLK11369  | LLK11369-047  | 1.361208214877030  | 0.078733454       | 0.72167073 | 0.006745552 | 0.093005012  | Ree spike                       | 1.237626909 | 0.07210559  |   |
| 342 | LLK11369  | LLK11369-048  | 2.343600758797390  | 0.055187687       | 0.72909621 | 0.009338689 | 0.224852481  | Y spike                         | 2.130830045 | 0.052338607 |   |
| 347 | LLK11369  | LLK11369-049  | 1.640645545396320  | 0.037735809       | 0.72171627 | 0.009879696 | 0.20901231   | Zr inc                          | 1.491694696 | 0.035857363 |   |
| 349 | LLK11369  | LLK11369-051  | 2.098830514728920  | 0.04228496        | 0.73449407 | 0.007876349 | 0.039224359  | Ree spike                       | 1.90828199  | 0.040691484 |   |
| 351 | LLK11369  | LLK11369-053  | 2.552004258446940  | 0.183678156       | 0.74208333 | 0.013394916 | -0.049635768 | Y spike<br>P and Ree            | 2.320313018 | 0.167787139 |   |
| 352 | LLK11369  | LLK11369-054  | 3.909710012341370  | 0.244111228       | 0.73561925 | 0.008654321 | 0.38782115   | spike                           | 3.554755447 | 0.223333685 |   |
| 353 | LLK11369  | LLK11369-055  | 2.326050418711040  | 0.316729088       | 0.7362351  | 0.009352826 | 0.457831969  | Mg drop<br>Na                   | 2.114873065 | 0.288352614 |   |
| 354 | LLK11369  | LLK11369-056  | 3.577655568925430  | 0.19913981        | 0.74307115 | 0.006523367 | 0.132674156  | fluctuation                     | 3.252847546 | 0.182480621 |   |
| 355 | LLK11369  | LLK11369-057  | 7.541483815922130  | 0.465685749       | 0.75679884 | 0.011072678 | 0.388270684  | Y spike                         | 6.856807944 | 0.426107823 |   |
| 356 | LLK11369  | LLK11369-058  | 3.282723245169500  | 0.504242573       | 0.72899598 | 0.00779709  | 0.151005575  | P spike                         | 2.984691524 | 0.45893728  |   |
| 357 | LLK11369  | LLK11369-059  | 6.953315248440570  | 0.419548009       | 0.76492221 | 0.009959301 | 0.488849814  | Z spike                         | 6.322037996 | 0.384006093 |   |
| 358 | LLK11369  | LLK11369-060  | 8.139993399152730  | 0.301664895       | 0.76814218 | 0.011286887 | 0.329958801  | Z/Y spike                       | 7.400980068 | 0.279107492 |   |
| 359 | LLK11369  | LLK11369-061  | 10.925541487891300 | 0.371855397       | 0.78852084 | 0.01273881  | 0.281324559  | Y spike                         | 9.93363395  | 0.345143182 |   |
| 360 | LLK11369  | LLK11369-062  | 8.074584681588040  | 0.650101864       | 0.76984833 | 0.01264935  | 0.731688521  | Z spike<br>Zr/Y                 | 7.341509674 | 0.593301133 |   |
| 361 | LLK11369  | LLK11369-063  | 7.497943878031830  | 0.270259681       | 0.77182841 | 0.012594805 | 0.355715903  | increase                        | 6.817220908 | 0.250295552 |   |
| 362 | LLK11369  | LLK11369-064  | 1.812191709631800  | 0.145170373       | 0.7168186  | 0.008151006 | 0.334422358  | P increase                      | 1.647666535 | 0.132491551 |   |
| 363 | LLK11369  | LLK11369-065  | 3.970629970954340  | 0.258978588       | 0.7415251  | 0.012020409 | 0.393533679  | Ree spike                       | 3.610144607 | 0.236813113 |   |
| 620 | LLK12_186 | LLK12_186-001 | 15.643990525349600 | 0.601250124       | 0.81590997 | 0.01809739  | 0.365652186  | Ree drop                        | 14.22370466 | 0.55562039  | Х |
| 621 | LLK12_186 | LLK12_186-002 | 24.517640374873200 | 1.001948189308100 | 0.9026872  | 0.02214837  | 0.476378295  | Ree spikes                      | 22.29173401 | 0.924196841 |   |
| 622 | LLK12_186 | LLK12_186-003 | 18.188389319623700 | 1.019251423891320 | 0.86183891 | 0.017249147 | 0.452533485  | P spike                         | 16.5371027  | 0.933888215 |   |
| 627 | LLK12_186 | LLK12_186-004 | 28.657938834220000 | 0.862217565       | 0.97208409 | 0.026937259 | 0.599485933  | Z spike                         | 26.05614325 | 0.804792056 | Х |
| 628 | LLK12_186 | LLK12_186-005 | 19.232832857046600 | 0.351081569       | 0.8816817  | 0.018114769 | 0.349147519  | P peak                          | 17.48672335 | 0.341782703 |   |
| 629 | LLK12_186 | LLK12_186-006 | 15.773792278794000 | 0.671921218       | 0.83892577 | 0.013456221 | 0.545685189  |                                 | 14.34172198 | 0.61907917  |   |
| 630 | LLK12_186 | LLK12_186-007 | 23.679777074337700 | 0.67834489        | 0.88882291 | 0.01676331  | 0.229627583  | Ree spike                       | 21.52993861 | 0.634832378 |   |
| 631 | LLK12_186 | LLK12_186-008 | 19.475224192809600 | 1.226007576048770 | 0.85027634 | 0.021192131 | 0.502346576  | Ree spike                       | 17.70710847 | 1.121542878 | X |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |           |               |                    |                   |                   |             |             | Coi        | istraming the in | idden Deidin | orium i |
|-----|-----------|---------------|--------------------|-------------------|-------------------|-------------|-------------|------------|------------------|--------------|---------|
| 632 | LLK12_186 | LLK12_186-009 | 21.472006216032400 | 0.445961719       | 0.88297314        | 0.018943034 | 0.608930756 | Ree spikes | 19.52260674      | 0.427794021  |         |
| 633 | LLK12_186 | LLK12_186-010 | 14.965073879925900 | 0.65906519        | 0.84444728        | 0.014623058 | 0.577160361 | Ree spikes | 13.60642547      | 0.606721469  |         |
| 634 | LLK12_186 | LLK12_186-012 | 13.947081603161700 | 0.239244955       | 0.82541297        | 0.015553107 | 0.518876497 | Ree spikes | 12.68085463      | 0.234869942  |         |
| 637 | LLK12_186 | LLK12_186-014 | 18.761665771618700 | 0.802521751       | 0.86415           | 0.019957535 | 0.704085449 | Ree spikes | 17.05833256      | 0.739328785  |         |
| 638 | LLK12_186 | LLK12_186-015 | 24.929571053190700 | 0.958602224       | 0.96938861        | 0.021506639 | 0.280022959 | P spike    | 22.66626635      | 0.885838444  | Х       |
| 639 | LLK12_186 | LLK12_186-016 | 15.758053180292500 | 0.664260578       | 0.82915825        | 0.020015534 | 0.514961041 | Zr spike   | 14.3274118       | 0.61219052   |         |
| 641 | LLK12_186 | LLK12_186-018 | 14.772583533029500 | 0.361612015       | 0.82066145        | 0.017230784 | 0.461275154 | Zr inc     | 13.43141093      | 0.341907916  | Χ       |
| 642 | LLK12_186 | LLK12_186-019 | 16.007067052607800 | 0.50363313        | 0.86948066        | 0.017684691 | 0.592416649 | Ree spike  | 14.55381821      | 0.46905987   |         |
| 643 | LLK12_186 | LLK12_186-020 | 18.104495464460400 | 0.870359057       | 0.8527263         | 0.018894809 | 0.759701903 | Ree spike  | 16.4608254       | 0.799651746  |         |
| 644 | LLK12_186 | LLK12_186-021 | 14.114263655710900 | 0.349784696       | 0.83436266        | 0.017171798 | 0.166654871 | Ree drop   | 12.83285856      | 0.330421516  |         |
| 645 | LLK12_186 | LLK12_186-022 | 25.545535951362700 | 0.590570428       | 1.012104462829100 | 0.027421957 | 0.512098244 | Fe spike   | 23.22630906      | 0.560931667  |         |
| 646 | LLK12_186 | LLK12_186-023 | 16.079385463869300 | 0.688819682       | 0.84513453        | 0.018348202 | 0.339194538 | Zr inc     | 14.61957099      | 0.634555294  |         |
| 647 | LLK12_186 | LLK12_186-024 | 17.731063269760400 | 0.732209753       | 0.86864238        | 0.01204221  | 0.532285526 | Ree spike  | 16.12129635      | 0.675192014  | Х       |
| 648 | LLK12_186 | LLK12_186-025 | 14.431438631526600 | 0.514798933       | 0.83101666        | 0.019806911 | 0.367425631 | P spike    | 13.12123787      | 0.476951763  |         |
| 649 | LLK12_186 | LLK12_186-026 | 29.584374296122200 | 0.949558248       | 0.91224405        | 0.023822901 | 0.527311175 | Ree spike  | 26.89846954      | 0.883561018  |         |
| 650 | LLK12_186 | LLK12_186-027 | 24.374866461948600 | 0.655196706       | 0.89505573        | 0.01879325  | 0.53238365  | Na spike   | 22.16192225      | 0.615500755  |         |
| 651 | LLK12_186 | LLK12_186-028 | 12.218543790230000 | 0.436633536       | 0.81343496        | 0.013407463 | 0.492586058 |            | 11.10924722      | 0.404506527  |         |
| 652 | LLK12_186 | LLK12_186-029 | 21.334683494663800 | 0.918452353       | 0.89866582        | 0.020418216 | 0.564275191 | Ree spike  | 19.39775127      | 0.845990596  | Х       |
| 653 | LLK12_186 | LLK12_186-030 | 19.586956691929300 | 0.79216207        | 0.88417879        | 0.016159734 | 0.521919974 | Y spike    | 17.808697        | 0.730908267  |         |
| 654 | LLK12_186 | LLK12_186-031 | 17.644628294383900 | 0.966535345       | 0.83708602        | 0.017731919 | 0.457867409 | Y spike    | 16.04270862      | 0.885902557  |         |
| 656 | LLK12_186 | LLK12_186-033 | 21.822349064431400 | 0.848731543       | 0.88216764        | 0.013530355 | 0.603947725 |            | 19.84114268      | 0.784025465  |         |
| 657 | LLK12_186 | LLK12_186-035 | 15.183650783601300 | 0.52395862        | 0.84614779        | 0.011760759 | 0.353946542 |            | 13.80515822      | 0.486052585  |         |
| 658 | LLK12_186 | LLK12_186-036 | 16.273694701721800 | 0.634408345       | 0.84094875        | 0.016334    | 0.437990955 | Zr spike   | 14.79623929      | 0.585999301  |         |
| 659 | LLK12_186 | LLK12_186-037 | 15.129401161453300 | 0.53294096        | 0.83049845        | 0.012766691 | 0.58627521  | Ree spike  | 13.75583381      | 0.493992591  |         |
| 660 | LLK12_186 | LLK12_186-038 | 10.705115761629800 | 0.60459395        | 0.78582031        | 0.015644629 | 0.47753718  | Na spike   | 9.733220224      | 0.553893106  |         |
| 661 | LLK12_186 | LLK12_186-039 | 13.563834894250000 | 0.691796261       | 0.81423866        | 0.011603777 | 0.622368832 |            | 12.3324021       | 0.634861785  |         |
| 662 | LLK12_186 | LLK12_186-040 | 7.943340025730070  | 0.365698144       | 0.7737786         | 0.012795565 | 0.225798858 | Ree spike  | 7.222180451      | 0.33630298   |         |
| 663 | LLK12_186 | LLK12_186-041 | 16.838502754824100 | 0.675352148       | 0.85687517        | 0.018373937 | 0.258105175 | Zr spike   | 15.30976957      | 0.623282377  |         |
| 664 | LLK12_186 | LLK12_186-043 | 19.116210089458300 | 0.777050963       | 0.8743511         | 0.019723953 | 0.385189143 | Ree spike  | 17.38068852      | 0.716860902  |         |
| 671 | LLK12_186 | LLK12_186-044 | 12.098334447456100 | 0.383111111       | 0.80592171        | 0.014620425 | 0.292370719 | Zircon     | 10.99995144      | 0.356704144  |         |
| 672 | LLK12_186 | LLK12_186-045 | 9.346044470761150  | 0.328534122       | 0.79126688        | 0.019442134 | 0.47205333  | Ree spike  | 8.497536232      | 0.304548259  | Х       |
| 673 | LLK12_186 | LLK12_186-046 | 18.276545429973900 | 0.858800823       | 0.87401349        | 0.021008147 | 0.479393586 | Ree spike  | 16.6172553       | 0.789413474  |         |
| 674 | LLK12_186 | LLK12_186-047 | 13.737964003689700 | 1.607319069222030 | 0.8210016         | 0.022854448 | 0.788367806 | ree spike  | 12.49072238      | 1.463996414  |         |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |                |                    |                    |                   |            |             |             |                  | U           |             |   |
|-----|----------------|--------------------|--------------------|-------------------|------------|-------------|-------------|------------------|-------------|-------------|---|
| 675 | LLK12_186      | LLK12_186-048      | 21.315319467086900 | 0.660297719       | 0.91034416 | 0.021130261 | 0.209935438 | ree spike        | 19.38014526 | 0.615426024 |   |
| 676 | LLK12_186      | LLK12_186-049      | 15.518442124441300 | 1.601478229940950 | 0.848537   | 0.022426212 | 0.686065252 | Zr inc           | 14.10955454 | 1.45941543  |   |
| 677 | LLK12_186      | LLK12_186-050      | 21.781074134593000 | 0.515443288       | 0.8941189  | 0.024824555 | 0.612182721 | P spike          | 19.80361502 | 0.488639197 |   |
| 678 | LLK12_186      | LLK12_186-051      | 14.156551983682800 | 0.347794732       | 0.83765242 | 0.014916144 | 0.350593984 | Ree spike        | 12.87130762 | 0.328753802 | Х |
| 679 | LLK12_186      | LLK12_186-052      | 21.373529659879900 | 1.118202583582270 | 0.86960857 | 0.022463284 | 0.445174785 | Ree spike        | 19.43307067 | 1.025706291 |   |
| 680 | LLK12_186      | LLK12_186-053      | 23.471476441359900 | 0.806197612       | 0.89054147 | 0.01701472  | 0.528161233 | Ree spike        | 21.34054916 | 0.748010405 |   |
| 681 | LLK12_186      | LLK12_186-054      | 13.873727667604500 | 0.725221618       | 0.84597105 | 0.018609777 | 0.695821149 | ree spike        | 12.61416034 | 0.665242056 |   |
| 682 | LLK12_186      | LLK12_186-055      | 15.779997934470600 | 0.410161302       | 0.84435562 | 0.016919811 | 0.460507724 | Na spike         | 14.34736424 | 0.386156788 | Х |
| 683 | LLK12_186      | LLK12_186-056      | 12.198334536812500 | 0.655867835       | 0.81253821 | 0.01706606  | 0.311573165 | Ree spike        | 11.09087272 | 0.601334888 |   |
| 684 | LLK12_186      | LLK12_186-057      | 12.374170999479600 | 0.456141546       | 0.8173007  | 0.013982263 | 0.410157429 | P spike          | 11.25074535 | 0.422110611 |   |
| 685 | LLK12_186      | LLK12_186-058      | 16.096655119462500 | 0.5217161         | 0.87695706 | 0.017194203 | 0.296286142 | P spike          | 14.63527276 | 0.485242935 |   |
| 686 | LLK12_186      | LLK12_186-059      | 22.609785335659600 | 0.637469676       | 0.90392372 | 0.025794301 | 0.686320935 | Zr spike         | 20.55708923 | 0.597120187 |   |
| 687 | LLK12_186      | LLK12_186-060      | 19.751859023085800 | 0.701061554       | 0.86883497 | 0.020446291 | 0.353951326 | Ree spike        | 17.95862819 | 0.649641662 |   |
| 749 | LLK14_361      | LLK14_361-001      | 13.534149354162400 | 1.160694340645090 | 0.80082797 | 0.022538927 | 0.665955643 | Zr ree spikes    | 12.30541165 | 1.058812452 |   |
| 750 | LLK14_361      | LLK14_361-003      | 24.122728889946000 | 0.401785816       | 0.88316433 | 0.013720268 | 0.639410755 |                  | 21.93267573 | 0.396137012 |   |
| 757 | LLK14_361      | LLK14_361-004      | 13.569136487004200 | 0.541823106       | 0.80330199 | 0.014691266 | 0.194812641 |                  | 12.33722237 | 0.500113872 |   |
| 758 | LLK14_361      | LLK14_361-005      | 13.622066821707600 | 0.577787078       | 0.81248165 | 0.011970782 | 0.46583977  | Zr Ree<br>spikes | 12.38534727 | 0.53240792  |   |
| 759 | _<br>LLK14_361 | _<br>LLK14_361-006 | 15.276955940385600 | 0.277470314       | 0.81384649 | 0.013733937 | 0.495780763 | Ree spikes       | 13.8899924  | 0.270295567 |   |
| 760 | LLK14_361      | LLK14_361-007      | 23.025152028456400 | 0.424933414       | 0.89131887 | 0.015959557 | 0.349980391 | Ree spike        | 20.93474563 | 0.413105975 |   |
| 761 | LLK14_361      | LLK14_361-008      | 14.570887525963200 | 0.631194092       | 0.81698994 | 0.014924401 | 0.485244288 | Ree spikes       | 13.24802649 | 0.581303333 |   |
| 762 | LLK14_361      | LLK14_361-009      | 17.634153813916800 | 0.528881207       | 0.83487066 | 0.015821289 | 0.333782618 | P spike          | 16.0331851  | 0.493736412 |   |
| 764 | LLK14_361      | LLK14_361-011      | 21.850969552881900 | 0.559046606       | 0.86685882 | 0.022552434 | 0.48594129  | Ree spike        | 19.86716477 | 0.526898199 |   |
| 765 | LLK14_361      | LLK14_361-012      | 18.082389002307500 | 1.060835887002580 | 0.84022977 | 0.020571385 | 0.541235713 | Zr inc           | 16.44072593 | 0.97133835  | х |
| 766 | LLK14_361      | LLK14_361-013      | 17.652733938398400 | 1.112841344949300 | 0.81173886 | 0.01845376  | 0.441832645 | P spike          | 16.05007837 | 1.018001841 |   |
| 767 | LLK14_361      | LLK14_361-014      | 20.687859553288900 | 0.643453224       | 0.85220085 | 0.018519164 | 0.671989764 | Ree spike        | 18.80965115 | 0.599609512 |   |
| 768 | LLK14_361      | LLK14_361-015      | 24.038823587758500 | 1.036144579137930 | 0.88412256 | 0.0188769   | 0.541604803 | Ree spike        | 21.85638802 | 0.954367211 | Х |
| 769 | LLK14_361      | LLK14_361-016      | 18.886024583039000 | 0.419279457       | 0.8569015  | 0.010869448 | 0.31311703  |                  | 17.17140109 | 0.39964071  |   |
| 770 | LLK14_361      | LLK14_361-017      | 9.157705486036340  | 0.66689178        | 0.77660326 | 0.010021863 | 0.69473897  |                  | 8.326296158 | 0.609129377 |   |
| 771 | LLK14_361      | LLK14_361-018      | 17.089936806820900 | 0.417762382       | 0.83475412 | 0.015562472 | 0.528615199 | Ree spike        | 15.53837644 | 0.395039652 |   |
| 772 | LLK14_361      | LLK14_361-019      | 23.599220028558200 | 0.646488093       | 0.87406413 | 0.019040157 | 0.392509197 | Ree spike        | 21.45669517 | 0.606604564 |   |
| 774 | LLK14_361      | LLK14_361-021      | 17.702669899569500 | 0.661381412       | 0.84374983 | 0.015044573 | 0.598435664 | Ree spike        | 16.09548075 | 0.611757246 |   |
| 775 | LLK14_361      | LLK14_361-022      | 21.299927877221100 | 0.395414443       | 0.85196885 | 0.0115486   | 0.395940115 |                  | 19.36615104 | 0.384126656 |   |
|     |                |                    |                    |                   |            |             |             |                  |             |             |   |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |           |               |                    |                   |            |             |              |            | Ū           |             |   |
|-----|-----------|---------------|--------------------|-------------------|------------|-------------|--------------|------------|-------------|-------------|---|
| 776 | LLK14_361 | LLK14_361-024 | 22.655698963886100 | 0.62973713        | 0.87993825 | 0.026402819 | 0.730425909  | La Spike   | 20.59883445 | 0.590369436 |   |
| 777 | LLK14_361 | LLK14_361-025 | 16.685048573651300 | 0.328594155       | 0.82272447 | 0.014207284 | 0.419986214  | Ree spike  | 15.17024718 | 0.316999913 |   |
| 778 | LLK14_361 | LLK14_361-026 | 26.068329359522800 | 0.896498727       | 0.87734449 | 0.021787797 | 0.471871894  | Ree spike  | 23.70163912 | 0.83175337  |   |
| 779 | LLK14_361 | LLK14_361-027 | 17.667187488219500 | 0.50661169        | 0.82476238 | 0.020804486 | 0.440570448  | Ree spike  | 16.06321972 | 0.474088406 |   |
| 780 | LLK14_361 | LLK14_361-028 | 15.811289732398400 | 0.894888561       | 0.82555115 | 0.011683706 | 0.58967836   |            | 14.37581512 | 0.819817428 |   |
| 781 | LLK14_361 | LLK14_361-029 | 21.579535987519200 | 0.519625882       | 0.85830845 | 0.02225625  | 0.436864827  | Ree spikes | 19.62037411 | 0.491929471 |   |
| 782 | LLK14_361 | LLK14_361-030 | 23.525051188871100 | 0.69698307        | 0.87586264 | 0.017475024 | 0.656447184  | Ree spikes | 21.38925997 | 0.651082145 |   |
| 783 | LLK14_361 | LLK14_361-031 | 21.418372656613400 | 0.681016988       | 0.85246124 | 0.017366171 | 0.385386397  | ree spikes | 19.47384246 | 0.633956452 |   |
| 786 | LLK14_361 | LLK14_361-032 | 20.565168985563300 | 0.454965196       | 0.86340496 | 0.018050418 | 0.275717461  | Ree spikes | 18.69809941 | 0.433791891 |   |
| 787 | LLK14_361 | LLK14_361-033 | 14.628093398899400 | 0.320362983       | 0.81326925 | 0.010699182 | 0.261895961  | Zr inc     | 13.30003876 | 0.305736578 |   |
| 788 | LLK14_361 | LLK14_361-034 | 26.047711110623100 | 0.881876791       | 0.89998939 | 0.015420137 | 0.451165349  | Ree spikes | 23.68289276 | 0.818702796 |   |
| 789 | LLK14_361 | LLK14_361-035 | 23.075700654468200 | 0.953641748       | 0.85398469 | 0.021984311 | 0.298734145  | Zr inc     | 20.98070505 | 0.879362374 |   |
| 790 | LLK14_361 | LLK14_361-036 | 14.907771151469200 | 0.576966716       | 0.80908837 | 0.012375719 | 0.231144928  | Ree spike  | 13.55432514 | 0.53306172  |   |
| 791 | LLK14_361 | LLK14_361-037 | 22.969796376927100 | 0.548230004       | 0.85580522 | 0.015383647 | 0.380079532  | Ree spike  | 20.8844156  | 0.51936854  |   |
| 792 | LLK14_361 | LLK14_361-038 | 20.444251272186400 | 0.579620259       | 0.85884082 | 0.011237436 | 0.554953022  |            | 18.58815957 | 0.542759159 |   |
| 793 | LLK14_361 | LLK14_361-040 | 18.479541295367700 | 0.439247975       | 0.82755685 | 0.011780472 | 0.433608436  | Ree spike  | 16.80182158 | 0.416259493 | Χ |
| 794 | LLK14_361 | LLK14_361-041 | 2.075777440941850  | 0.047418826       | 0.72387888 | 0.0051582   | -0.115162684 | Zr inc     | 1.887321858 | 0.045084555 |   |
| 795 | LLK14_361 | LLK14_361-042 | 13.399671468817700 | 0.460240618       | 0.78999571 | 0.015407402 | 0.521580466  | Ree spike  | 12.18314274 | 0.427023214 |   |
| 796 | LLK14_361 | LLK14_361-043 | 20.559326425346700 | 0.858196112       | 0.83875463 | 0.020211051 | 0.517610778  | Ree spike  | 18.69278728 | 0.791133131 | Χ |
| 801 | LLK14_361 | LLK14_361-044 | 21.726161953554700 | 0.626516268       | 0.87564343 | 0.020065007 | 0.310958661  | Ree spike  | 19.7536882  | 0.586111744 |   |
| 802 | LLK14_361 | LLK14_361-045 | 14.105532467444200 | 0.437202975       | 0.82547241 | 0.015102153 | 0.478417307  | Ree spike  | 12.82492006 | 0.407480928 |   |
| 803 | LLK14_361 | LLK14_361-046 | 22.330173226231000 | 0.699027849       | 0.87186734 | 0.026876236 | 0.337313461  | Zr inc     | 20.30286253 | 0.651196904 |   |
| 804 | LLK14_361 | LLK14_361-047 | 17.152103217433800 | 0.588930117       | 0.83241135 | 0.017505942 | 0.435875121  | Zr inc     | 15.59489889 | 0.546431897 |   |
| 805 | LLK14_361 | LLK14_361-048 | 19.094039132685300 | 0.405857557       | 0.83946101 | 0.015615318 | 0.239644762  | Zr inc     | 17.36053042 | 0.388427789 |   |
| 806 | LLK14_361 | LLK14_361-049 | 17.724305572838400 | 0.399616366       | 0.83925408 | 0.013019529 | 0.173360367  | Ree spike  | 16.11515217 | 0.380376111 |   |
| 807 | LLK14_361 | LLK14_361-050 | 18.208499238283500 | 1.027470011220140 | 0.8341678  | 0.02406382  | 0.525095846  | Ree spike  | 16.55538688 | 0.941319401 |   |
| 808 | LLK14_361 | LLK14_361-051 | 24.493909577062100 | 0.623056011       | 0.87885911 | 0.024180907 | 0.427935173  | Zr inc     | 22.27015769 | 0.587463316 |   |
| 809 | LLK14_361 | LLK14_361-052 | 21.775726478397000 | 0.496097647       | 0.85865761 | 0.013493743 | 0.194680683  | Ree spike  | 19.79875286 | 0.47178587  |   |
| 810 | LLK14_361 | LLK14_361-053 | 21.473412213448000 | 0.478474865       | 0.86337055 | 0.018393949 | 0.43760835   | Ree spike  | 19.52388509 | 0.455913075 |   |
| 811 | LLK14_361 | LLK14_361-054 | 20.316175806206200 | 0.602628807       | 0.8540636  | 0.01091906  | 0.330154414  |            | 18.47171181 | 0.562906527 |   |
| 812 | LLK14_361 | LLK14_361-055 | 20.715737336397600 | 0.434872577       | 0.85445337 | 0.014389844 | 0.341553048  | Ree spike  | 18.83499797 | 0.416708567 |   |
| 813 | LLK14_361 | LLK14_361-056 | 25.547270901720700 | 0.771225895       | 0.87437718 | 0.022982623 | 0.449290327  | Ree spike  | 23.22788649 | 0.719736805 |   |
| 814 | LLK14_361 | LLK14_361-057 | 24.542953292245300 | 0.57530721        | 0.89406923 | 0.018337154 | 0.36310068   | Ree spike  | 22.31474882 | 0.545809461 |   |

Matthew Robert Barnett Constraining the hidden Delamerian margin

| 815 | LLK14_361      | LLK14_361-058      | 23.138631378966000 | 0.428660215       | 0.87235235 | 0.015429795 | 0.195786336 | Zr inc           | 21.03792242 | 0.416530484 |
|-----|----------------|--------------------|--------------------|-------------------|------------|-------------|-------------|------------------|-------------|-------------|
| 816 | LLK14_361      | LLK14_361-059      | 21.662938122208800 | 0.801592566       | 0.86348542 | 0.014950607 | 0.514316485 | Ree spike        | 19.69620433 | 0.741691381 |
| 688 | LLK14_379      | LLK14_379-001      | 14.976140198689100 | 0.451768089       | 0.81266343 | 0.012454871 | 0.43652662  | Ree spike        | 13.6164871  | 0.421622722 |
| 689 | LLK14_379      | LLK14_379-002      | 15.920548698081800 | 0.775743734       | 0.81902442 | 0.016282545 | 0.499226286 |                  | 14.47515468 | 0.712527064 |
| 690 | LLK14_379      | LLK14_379-003      | 14.306070952004300 | 0.42651601        | 0.82067658 | 0.009532477 | 0.329116184 |                  | 13.00725207 | 0.398296341 |
| 691 | LLK14_379      | LLK14_379-004      | 14.436943855676300 | 0.284855037       | 0.8094324  | 0.017696437 | 0.547855672 | Zr spike         | 13.12624329 | 0.274746482 |
| 692 | LLK14_379      | LLK14_379-005      | 18.841454727316200 | 0.30647621        | 0.84999834 | 0.015656961 | 0.585210876 | Ree spike        | 17.13087764 | 0.303261705 |
| 693 | LLK14_379      | LLK14_379-006      | 8.025064561381060  | 0.216513751       | 0.77398562 | 0.018257927 | 0.668329366 | Zr inc           | 7.296485384 | 0.203348523 |
| 694 | LLK14_379      | LLK14_379-007      | 16.333008017149300 | 0.305351146       | 0.83693037 | 0.014993694 | 0.364363304 | Ree spike        | 14.85016767 | 0.296376921 |
| 695 | LLK14_379      | LLK14_379-008      | 17.420584139790200 | 0.8176655         | 0.83120145 | 0.014825361 | 0.450275007 | Ree spike        | 15.83900498 | 0.751619889 |
| 696 | LLK14_379      | LLK14_379-009      | 13.762677298974300 | 0.350381603       | 0.80036566 | 0.011849532 | 0.448251625 | Zr spike         | 12.51319201 | 0.330346015 |
| 699 | LLK14_379      | LLK14_379-011      | 16.168584363942400 | 0.408968893       | 0.8231191  | 0.011487483 | 0.497879173 |                  | 14.7006717  | 0.385759567 |
| 700 | LLK14_379      | LLK14_379-012      | 16.518588542382100 | 0.679825032       | 0.82869958 | 0.01216209  | 0.445259605 | Ree spike        | 15.01889972 | 0.626946023 |
| 701 | LLK14_379      | LLK14_379-013      | 19.751911713802800 | 1.228139697011630 | 0.87352037 | 0.025713287 | 0.425261709 | Ree spike        | 17.9586761  | 1.123664465 |
| 702 | LLK14_379      | LLK14_379-014      | 18.530090674061100 | 0.411411045       | 0.84629856 | 0.022594709 | 0.543592204 | Ree spike        | 16.84778169 | 0.392137972 |
| 703 | LLK14_379      | LLK14_379-016      | 10.822354604656200 | 0.398622185       | 0.7986261  | 0.01345576  | 0.159390464 | Ree spike        | 9.839815192 | 0.368892676 |
| 704 | LLK14_379      | LLK14_379-017      | 15.199363346017300 | 0.483091343       | 0.82123733 | 0.013540299 | 0.157405682 | Zr spike         | 13.81944427 | 0.449716122 |
| 705 | LLK14_379      | LLK14_379-018      | 11.111436616761500 | 0.33952192        | 0.79710858 | 0.012539021 | 0.318010887 | Zr inc           | 10.10265204 | 0.316661752 |
| 706 | LLK14_379      | LLK14_379-019      | 16.202327836301900 | 0.387012131       | 0.82096969 | 0.015863958 | 0.56668698  | Ree spike        | 14.73135167 | 0.36661522  |
| 707 | LLK14_379      | LLK14_379-020      | 15.920080249773100 | 0.521074759       | 0.82082412 | 0.013962517 | 0.327467364 | Ree spike        | 14.47472877 | 0.484437599 |
| 708 | LLK14_379      | LLK14_379-022      | 16.270165135961900 | 0.432322241       | 0.83310097 | 0.01091509  | 0.492096586 |                  | 14.79303016 | 0.406429403 |
| 709 | LLK14_379      | LLK14_379-023      | 12.039394778680600 | 0.283778922       | 0.79093613 | 0.013862748 | 0.245177679 | Zr inc           | 10.94636278 | 0.269107876 |
| 714 | LLK14_379      | LLK14_379-024      | 20.201592181884000 | 0.834236167       | 0.86085522 | 0.016808078 | 0.535089581 | Ree spike        | 18.367531   | 0.769273421 |
| 715 | LLK14_379      | LLK14_379-025      | 13.715556173537500 | 0.724488592       | 0.80955149 | 0.017749165 | 0.485205975 | Zr inc           | 12.47034892 | 0.664449002 |
| 717 | LLK14_379      | LLK14_379-027      | 11.382858383327900 | 0.517736528       | 0.78892066 | 0.009372816 | 0.292072771 |                  | 10.34943198 | 0.476251773 |
| 718 | LLK14_379      | LLK14_379-028      | 18.960878151971700 | 0.743280577       | 0.84568149 | 0.01676897  | 0.590598219 | Ree spikes       | 17.23945885 | 0.686445985 |
| 719 | LLK14_379      | LLK14_379-029      | 13.564035428868200 | 0.241104563       | 0.80734396 | 0.012059102 | 0.47031144  | Ree spikes       | 12.33258443 | 0.235536012 |
| 720 | LLK14 379      | LLK14 379-030      | 20.100864980157400 | 1.026559554438890 | 0.85789069 | 0.01991711  | 0.656952545 | Zr Ree<br>spikes | 18.27594861 | 0.942051347 |
| 721 | _<br>LLK14_379 | _<br>LLK14_379-031 | 17.363297061612200 | 0.345018642       | 0.83830915 | 0.017507928 | 0.243539927 | Zr spike         | 15.78691888 | 0.332515503 |
| 722 | LLK14_379      | LLK14_379-032      | 16.884232225405900 | 1.294219799308000 | 0.84374671 | 0.022431638 | 0.670141869 | Ree P spike      | 15.35134736 | 1.18159663  |
|     | _              | _                  |                    |                   |            |             |             | Zr Ree           |             |             |
| 723 | LLK14_379      | LLK14_379-033      | 17.671360638739600 | 0.349636484       | 0.82644966 | 0.020883367 | 0.394520567 | spikes           | 16.06701399 | 0.337125696 |
| 724 | LLK14_379      | LLK14_379-034      | 15.880174262716000 | 0.578203301       | 0.82934588 | 0.013698395 | 0.333527594 | Zr spike         | 14.43844576 | 0.535297469 |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |           |               |                    |                   |            |             |              |                     | C           |             |  |
|-----|-----------|---------------|--------------------|-------------------|------------|-------------|--------------|---------------------|-------------|-------------|--|
| 725 | LLK14_379 | LLK14_379-035 | 12.339398266261400 | 0.431966262       | 0.80116768 | 0.013359899 | 0.465494428  | P spike             | 11.21912957 | 0.400492143 |  |
| 728 | LLK14_379 | LLK14_379-036 | 20.184495429606700 | 0.643261941       | 0.86255967 | 0.013263362 | 0.632407022  | Ree spikes          | 18.35198642 | 0.598747154 |  |
| 729 | LLK14_379 | LLK14_379-037 | 16.161845346249500 | 0.479257016       | 0.83282159 | 0.011740043 | 0.509626168  | Ree spike           | 14.6945445  | 0.447673853 |  |
| 730 | LLK14_379 | LLK14_379-038 | 16.074921257447800 | 0.467698384       | 0.81829379 | 0.01523937  | 0.411367139  | P spike<br>Zr Ree   | 14.61551208 | 0.437322024 |  |
| 731 | LLK14_379 | LLK14_379-040 | 14.132515262144100 | 0.647866719       | 0.80548456 | 0.01569494  | 0.528727021  | spikes              | 12.84945314 | 0.59584804  |  |
| 732 | LLK14_379 | LLK14_379-041 | 11.703465388786900 | 0.194561131       | 0.79860882 | 0.011090442 | 0.210835298  | Ree spikes          | 10.64093173 | 0.191880459 |  |
| 733 | LLK14_379 | LLK14_379-042 | 20.250454213610900 | 0.645169448       | 0.85753378 | 0.018803322 | 0.648475582  | Ree spikes          | 18.41195695 | 0.60053096  |  |
| 734 | LLK14_379 | LLK14_379-043 | 20.248177759307200 | 0.901809795       | 0.86232844 | 0.015468471 | 0.580409033  | Zr inc              | 18.40988717 | 0.829960619 |  |
| 735 | LLK14_379 | LLK14_379-044 | 12.849589133594200 | 0.531397597       | 0.80494419 | 0.011458054 | 0.363903799  | Ree spikes          | 11.68300125 | 0.489997521 |  |
| 736 | LLK14_379 | LLK14_379-045 | 11.683450085726100 | 0.667792125       | 0.78524991 | 0.013125272 | 0.399006328  | Ree spike<br>Zr Ree | 10.62273358 | 0.611682492 |  |
| 737 | LLK14_379 | LLK14_379-048 | 17.123612182687500 | 0.431206158       | 0.82437697 | 0.017868382 | 0.548139871  | spikes              | 15.5689945  | 0.406863408 |  |
| 738 | LLK14_379 | LLK14_379-050 | 15.335601617123100 | 0.959718449       | 0.82806477 | 0.022640483 | 0.59933425   | Ree spike           | 13.94331375 | 0.878007018 |  |
| 739 | LLK14_379 | LLK14_379-051 | 19.521164028985600 | 0.796780735       | 0.84408004 | 0.023073257 | 0.247354449  | Zr inc              | 17.74887752 | 0.734976078 |  |
| 740 | LLK14_379 | LLK14_379-052 | 12.804244310405900 | 0.862479699       | 0.80231329 | 0.01582928  | 0.710129545  | Zr inc              | 11.64177319 | 0.788382642 |  |
| 741 | LLK14_379 | LLK14_379-053 | 13.667829357511800 | 0.645568861       | 0.79820064 | 0.016253789 | 0.331200163  | Ree spike           | 12.42695512 | 0.59334374  |  |
| 742 | LLK14_379 | LLK14_379-054 | 16.918563162642500 | 0.50570038        | 0.8290317  | 0.01089278  | 0.385065505  | Ree spike           | 15.38256146 | 0.472178688 |  |
| 743 | LLK14_379 | LLK14_379-055 | 18.340862901250200 | 1.001831742233110 | 0.85331052 | 0.017942023 | 0.207711456  | P spike             | 16.67573352 | 0.918296109 |  |
| 744 | LLK14_379 | LLK14_379-056 | 12.008918602113400 | 0.398797732       | 0.79435926 | 0.013906281 | 0.494953923  | Zr inc              | 10.91865347 | 0.370527158 |  |
| 745 | LLK14_379 | LLK14_379-057 | 19.503698759204500 | 0.852271923       | 0.84828497 | 0.019592861 | 0.390365328  | Ree spike           | 17.73299789 | 0.784734893 |  |
| 746 | LLK14_379 | LLK14_379-058 | 15.016836784484200 | 0.592908777       | 0.8427005  | 0.019702959 | 0.402785452  | Ree spike           | 13.65348892 | 0.547452259 |  |
| 747 | LLK14_379 | LLK14_379-059 | 15.782675067058100 | 0.65388468        | 0.82216724 | 0.018609931 | 0.441400755  | Ree spike           | 14.34979832 | 0.602911512 |  |
| 748 | LLK14_379 | LLK14_379-060 | 18.416222714912500 | 0.364621377       | 0.85045975 | 0.014637107 | 0.430602105  | Ree spike           | 16.74425157 | 0.35154796  |  |
| 393 | MP02556_b | MP02556_b-002 | 1.884311923255930  | 0.17195688        | 0.71315144 | 0.075861997 | 0.379278364  | Rb low              | 1.702323374 | 0.156242287 |  |
| 394 | MP02556_b | MP02556_b-003 | 7.463028287474070  | 0.513912436       | 0.76494964 | 0.026795195 | 0.301548856  | zr spike            | 6.74224227  | 0.46895617  |  |
| 395 | MP02556_b | MP02556_b-004 | 7.614413213805570  | 0.267497248       | 0.7542477  | 0.013314817 | 0.181447728  |                     | 6.879006303 | 0.250888475 |  |
| 396 | MP02556_b | MP02556_b-005 | 2.231621096319730  | 0.202532087       | 0.71624666 | 0.01852509  | 0.354077682  | Zr spike            | 2.016089114 | 0.184034948 |  |
| 397 | MP02556_b | MP02556_b-008 | 0.274698785        | 0.012593924       | 0.70807758 | 0.011801514 | 0.229162767  | Fe spike            | 0.248168128 | 0.01163461  |  |
| 398 | MP02556_b | MP02556_b-009 | 2.997055686027080  | 0.191975254       | 0.72477984 | 0.011388534 | -0.127232154 | Zr spike            | 2.707597339 | 0.175452077 |  |
| 399 | MP02556_b | MP02556_b-010 | 6.979809814022870  | 0.197082794       | 0.75912431 | 0.017158501 | 0.10753105   | Zr drop             | 6.305693473 | 0.188466813 |  |
| 400 | MP02556_b | MP02556_b-012 | 0.216470544        | 0.015545784       | 0.726127   | 0.007780539 | 0.101130815  | Zr spike            | 0.195563623 | 0.014174514 |  |
| 401 | MP02556_b | MP02556_b-013 | 0.417578498        | 0.021105581       | 0.71850469 | 0.009079703 | 0.072813266  | Zr spike            | 0.377248389 | 0.019422279 |  |
| 402 | MP02556_b | MP02556_b-014 | 7.211375783430220  | 0.228419031       | 0.77386073 | 0.01592181  | 0.426696469  | Ree spike           | 6.514894592 | 0.216008718 |  |
|     |           |               |                    |                   |            |             |              |                     |             |             |  |

Matthew Robert Barnett Constraining the hidden Delamerian margin

| 403 | MP02556_b | MP02556_b-016      | 0.35501408         | 0.019460463 | 0.71959163 | 0.008350089 | 0.165087023  | Ree spike        | 0.320726499 | 0.017859693 |
|-----|-----------|--------------------|--------------------|-------------|------------|-------------|--------------|------------------|-------------|-------------|
| 404 | MP02556_b | MP02556_b-017      | 0.557528003        | 0.021453363 | 0.7173047  | 0.006955673 | 0.067754475  |                  | 0.503681445 | 0.020000035 |
| 407 | MP02556_b | MP02556_b-020      | 0.55743568         | 0.054363782 | 0.70998404 | 0.020056492 | -0.148463431 | Ree spike        | 0.503598038 | 0.049360609 |
| 408 | MP02556_b | MP02556_b-022      | 0.818473987        | 0.049439817 | 0.7171958  | 0.009728871 | 0.106330074  | Zr spike         | 0.739425029 | 0.045248847 |
| 409 | MP02556_b | MP02556_b-023      | 2.006560274140080  | 0.048884259 | 0.72389381 | 0.011109832 | 0.465539575  | Y spike          | 1.812764869 | 0.047602    |
| 414 | MP02556_b | MP02556_b-024      | 0.779491433        | 0.071053609 | 0.71900308 | 0.009629529 | -0.07040081  | Y spike          | 0.704207446 | 0.06456108  |
| 415 | MP02556_b | MP02556_b-026      | 0.487147119        | 0.02582551  | 0.71494888 | 0.011519085 | -0.098830631 | Zr spike         | 0.44009801  | 0.023726531 |
| 416 | MP02556_b | MP02556_b-027      | 1.139192302853800  | 0.039091277 | 0.71849162 | 0.007723148 | 0.113381056  |                  | 1.029168081 | 0.036727717 |
| 417 | MP02556_b | MP02556_b-028      | 1.170574773121830  | 0.074843122 | 0.72192416 | 0.015477039 | -0.052279546 | Zr spike         | 1.057519603 | 0.068404305 |
| 418 | MP02556_b | MP02556_b-030      | 5.460749622050930  | 0.274546277 | 0.76456    | 0.012614949 | 0.174438515  | Zr spike         | 4.933345488 | 0.252698128 |
| 419 | MP02556_b | MP02556_b-031      | 0.504100123        | 0.031298844 | 0.71738114 | 0.011310758 | 0.144898285  | Zr spike         | 0.455413678 | 0.02862601  |
| 420 | MP02556_b | MP02556_b-034      | 6.411234816582910  | 0.287328359 | 0.76158836 | 0.013703751 | -0.038970348 | Zr spike         | 5.792031963 | 0.265711209 |
| 422 | MP02556_b | MP02556_b-036      | 3.797674088071120  | 0.31002488  | 0.72243476 | 0.010829389 | 0.270966645  | Mg spike         | 3.430891292 | 0.282093209 |
| 423 | MP02556_b | MP02556_b-038      | 1.441486869704960  | 0.069898274 | 0.73432028 | 0.017786693 | 0.023978     | La spike         | 1.302266765 | 0.064424097 |
| 424 | MP02556_b | MP02556_b-039      | 1.128429470995990  | 0.115202034 | 0.71982478 | 0.014389626 | -0.0193671   | Mg spike         | 1.019444733 | 0.104554105 |
| 364 | MP02556_w | MP02556_w-001      | 1.704114473277280  | 0.077097016 | 0.72325819 | 0.008762702 | -0.146170957 | Zr inc           | 1.539529557 | 0.071266175 |
| 367 | MP02556_w | MP02556_w-002      | 3.471952741711780  | 0.198896486 | 0.73186306 | 0.012772003 | -0.120754582 | Zr spike         | 3.136628408 | 0.182297039 |
| 368 | MP02556_w | MP02556_w-003      | 1.002688898491540  | 0.018794454 | 0.71868808 | 0.009069847 | 0.368227326  | Zr spike         | 0.905848298 | 0.019159806 |
| 369 | MP02556_w | MP02556_w-004      | 3.245432390340770  | 0.878202309 | 0.72269065 | 0.021285309 | 0.395438048  | 3 Zr peaks       | 2.931985597 | 0.793904849 |
| 370 | MP02556_w | MP02556_w-005      | 6.905905752494450  | 0.145398525 | 0.75931656 | 0.008466953 | 0.212591213  |                  | 6.238927133 | 0.144887658 |
| 371 | MP02556 w | MP02556 w-007      | 3.083190310959240  | 0.392115125 | 0.7266137  | 0.011071582 | 0.065114055  | Zr<br>increasing | 2.785413004 | 0.355294396 |
| 372 | MP02556 w | MP02556 w-008      | 8.997605729642450  | 0.813847444 | 0.76891374 | 0.015207822 | 0.315757536  | Zr drop          | 8.128608835 | 0.739547921 |
| 373 | MP02556 w | MP02556 w-009      | 1.367283433441150  | 0.127782388 | 0.71439336 | 0.010102642 | 0.124307962  |                  | 1.235229964 | 0.116073965 |
| 374 | MP02556 w | MP02556_w-011      | 5.033127062514770  | 0.20597565  | 0.74123741 | 0.009872052 | 0.194771448  |                  | 4.547023101 | 0.191343145 |
| 375 | MP02556_w | MP02556_w-015      | 3.139445663713590  | 0.141709012 | 0.7232969  | 0.009513016 | 0.196694146  | Y spike          | 2.836235164 | 0.131005041 |
| 376 | MP02556_w | MP02556_w-019      | 3.746311302617120  | 0.233272666 | 0.73378488 | 0.013184089 | 0.258415572  | Zr spike         | 3.384489171 | 0.21333697  |
| 377 | MP02556 w | MP02556 w-020      | 6.372082040494570  | 0.150354669 | 0.74073699 | 0.016417273 | -0.122880274 | Mg spike         | 5.756660597 | 0.147082279 |
| 378 | MP02556_w | _<br>MP02556 w-022 | 11.127187144037900 | 0.437265167 | 0.77167567 | 0.0151722   | 0.460111367  | Zr spike         | 10.05251335 | 0.407131737 |
| 379 | MP02556_w | _<br>MP02556_w-023 | 4.073222844246640  | 0.114447238 | 0.73831015 | 0.018192908 | 0.09189416   | Mg spike         | 3.6798273   | 0.109502074 |
| 384 | MP02556_w | MP02556_w-025      | 0.951262544        | 0.081700004 | 0.71034622 | 0.013283949 | 0.211266368  | Mg spike         | 0.859388748 | 0.074288261 |
| 385 | MP02556_w | MP02556_w-026      | 9.525452116306030  | 0.750111393 | 0.76006879 | 0.017395626 | 0.09010869   | Mg spike         | 8.605475341 | 0.682892076 |
| 388 | MP02556_w | MP02556_w-028      | 2.885722000191490  | 0.062919305 | 0.72786062 | 0.022285955 | 0.47400062   | Ree spikes       | 2.607016361 | 0.062319941 |
|     |           |                    |                    |             |            |             |              |                  |             |             |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |           |               |                   |             |            |             |              |           | C           |             |
|-----|-----------|---------------|-------------------|-------------|------------|-------------|--------------|-----------|-------------|-------------|
| 389 | MP02556_w | MP02556_w-029 | 6.262447224043890 | 0.481302224 | 0.75203704 | 0.017625715 | 0.052209181  | Mg spike  | 5.65761441  | 0.438338121 |
| 390 | MP02556_w | MP02556_w-030 | 1.208982972472530 | 0.080258071 | 0.73490643 | 0.013487406 | 0.161757533  | Zr drop   | 1.092218304 | 0.073292441 |
| 391 | MP02556_w | MP02556_w-035 | 8.944654124658380 | 0.409890786 | 0.77454    | 0.015834147 | -0.099505535 | K spikes  | 8.080771344 | 0.378675862 |
| 392 | MP02556_w | MP02556_w-038 | 2.901049075854870 | 0.135191034 | 0.73162237 | 0.018582635 | 0.195935169  | Mg spike  | 2.620863134 | 0.124805491 |
| 425 | MP02628   | MP02628-001   | 0.081222347       | 0.004231057 | 0.71388827 | 0.005869916 | 0.317011329  | Mg spike  | 0.073377819 | 0.003889467 |
| 426 | MP02628   | MP02628-002   | 0.147595825       | 0.005492118 | 0.71693874 | 0.005347669 | 0.059643977  | Mg spike  | 0.133340887 | 0.005130866 |
| 427 | MP02628   | MP02628-003   | 1.699620090423890 | 0.054107305 | 0.72737815 | 0.005336262 | 0.048560409  | Y spike   | 1.535469246 | 0.051145151 |
| 430 | MP02628   | MP02628-005   | 0.273371157       | 0.017251232 | 0.71951419 | 0.005594031 | 0.084549712  | Zr spike  | 0.246968723 | 0.015771894 |
| 431 | MP02628   | MP02628-007   | 0.438279004       | 0.034443441 | 0.717039   | 0.006575042 | -0.008379588 | La Spike  | 0.395949621 | 0.031357856 |
| 432 | MP02628   | MP02628-008   | 0.67537424        | 0.016204437 | 0.72451688 | 0.009557675 | 0.171089444  | Zr spike  | 0.610145985 | 0.015813403 |
| 433 | MP02628   | MP02628-009   | 0.568137348       | 0.025197807 | 0.72240909 | 0.004793772 | -0.007328846 |           | 0.51326613  | 0.023313249 |
| 434 | MP02628   | MP02628-010   | 0.587076949       | 0.021456534 | 0.72240771 | 0.009816348 | 0.104912642  |           | 0.530376526 | 0.020068967 |
| 435 | MP02628   | MP02628-011   | 0.244189112       | 0.017695438 | 0.71317675 | 0.007897022 | -0.004655766 | Zr spike  | 0.220605106 | 0.016131912 |
| 436 | MP02628   | MP02628-012   | 0.446222699       | 0.007839375 | 0.7198003  | 0.007848881 | 0.07742421   | La spike  | 0.403126107 | 0.008109553 |
| 437 | MP02628   | MP02628-013   | 0.133231722       | 0.00647398  | 0.71566649 | 0.004920477 | 0.052373185  |           | 0.120364082 | 0.005966473 |
| 438 | MP02628   | MP02628-014   | 0.282604378       | 0.012339098 | 0.71990269 | 0.004819212 | -0.103296142 |           | 0.255310192 | 0.011424705 |
| 439 | MP02628   | MP02628-016   | 0.461528338       | 0.018140205 | 0.71889822 | 0.006971953 | 0.052363331  | Zr spike  | 0.416953514 | 0.01688991  |
| 440 | MP02628   | MP02628-017   | 1.101685790742010 | 0.047143208 | 0.70533484 | 0.020716036 | 0.377926613  | La spike  | 0.995283981 | 0.043692628 |
| 441 | MP02628   | MP02628-018   | 0.153606414       | 0.007467081 | 0.71748437 | 0.005986684 | 0.003579052  | La spike  | 0.138770967 | 0.006881613 |
| 442 | MP02628   | MP02628-019   | 0.281462423       | 0.022537044 | 0.72411847 | 0.009381727 | -0.071874288 | Ree spike | 0.254278527 | 0.020512316 |
| 443 | MP02628   | MP02628-020   | 0.204163479       | 0.010476903 | 0.71573758 | 0.004632113 | 0.050366276  |           | 0.184445185 | 0.009636077 |
| 444 | MP02628   | MP02628-021   | 0.407569124       | 0.017995331 | 0.71955809 | 0.004801032 | 0.073439705  |           | 0.36820573  | 0.016652947 |
| 445 | MP02628   | MP02628-022   | 0.512273938       | 0.020027994 | 0.71816016 | 0.005008307 | 0.118860872  |           | 0.462798058 | 0.018653417 |
| 446 | MP02628   | MP02628-023   | 0.460771166       | 0.01307172  | 0.71548466 | 0.005566571 | 0.226382295  | Mg spike  | 0.41626947  | 0.012493965 |
| 451 | MP02628   | MP02628-024   | 1.086469587810010 | 0.056916088 | 0.72062585 | 0.006022385 | -0.223318225 | K spikes  | 0.981537373 | 0.052311026 |
| 452 | MP02628   | MP02628-025   | 0.600956296       | 0.030345614 | 0.7198546  | 0.005559233 | 0.077198581  |           | 0.542915394 | 0.027926308 |
| 453 | MP02628   | MP02628-026   | 0.870740913       | 0.019448605 | 0.72100957 | 0.005442399 | -0.118350527 |           | 0.786643969 | 0.019186992 |
| 454 | MP02628   | MP02628-027   | 0.474889063       | 0.007009396 | 0.71526474 | 0.004828868 | 0.18241582   |           | 0.429023848 | 0.007601047 |
| 455 | MP02628   | MP02628-028   | 1.633273291717300 | 0.104049541 | 0.73350435 | 0.011082391 | -0.015446154 | La spike  | 1.475530281 | 0.095105997 |
| 456 | MP02628   | MP02628-029   | 0.159072461       | 0.00679868  | 0.72077114 | 0.007331425 | 0.27838582   | Ree spike | 0.143709099 | 0.006301445 |
| 459 | MP02628   | MP02628-031   | 0.285554737       | 0.012375652 | 0.71532204 | 0.004910914 | 0.076757094  |           | 0.257975602 | 0.011462662 |
| 460 | MP02628   | MP02628-032   | 0.802409391       | 0.037396008 | 0.72005105 | 0.005748074 | -0.064958285 | La spike  | 0.724911967 | 0.034523077 |
| 461 | MP02628   | MP02628-033   | 0.173260627       | 0.012231655 | 0.71565699 | 0.006753808 | -0.243154379 | Zr spike  | 0.156526959 | 0.011156267 |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |             |                 |                    |                   |            |             |              |           |             | =           |
|-----|-------------|-----------------|--------------------|-------------------|------------|-------------|--------------|-----------|-------------|-------------|
| 462 | MP02628     | MP02628-034     | 0.484389965        | 0.063886915       | 0.71140052 | 0.01393312  | 0.132124205  | Mg spike  | 0.437607145 | 0.057875758 |
| 463 | MP02628     | MP02628-035     | 0.414780313        | 0.036135863       | 0.71841437 | 0.007315334 | -0.044374041 | Mg spike  | 0.374720455 | 0.032851711 |
| 464 | MP02628     | MP02628-036     | 0.465892236        | 0.023091185       | 0.71602323 | 0.006450054 | 0.078983636  | Mg spike  | 0.420895943 | 0.021264877 |
| 465 | MP02628     | MP02628-037     | 0.109881402        | 0.004195975       | 0.71816762 | 0.005861128 | -0.00088669  | Mg spike  | 0.099268957 | 0.003913559 |
| 466 | MP02628     | MP02628-038     | 0.454257734        | 0.020389289       | 0.71932785 | 0.009783489 | 0.138435832  | Ree spike | 0.410385112 | 0.018853989 |
| 467 | MP02628     | MP02628-039     | 0.246475206        | 0.016595043       | 0.71327949 | 0.007419413 | 0.083441014  | Mg spike  | 0.222670408 | 0.015150249 |
| 468 | MP02628     | MP02628-040     | 0.569099089        | 0.03768516        | 0.71793164 | 0.006713886 | -0.013016003 |           | 0.514134985 | 0.034416289 |
| 469 | MP02628     | MP02628-041     | 0.486412874        | 0.066964116       | 0.71520102 | 0.008518014 | 0.115109359  | Zr spike  | 0.439434679 | 0.060649737 |
| 470 | MP02628     | MP02628-043     | 0.895346186        | 0.030172209       | 0.71556132 | 0.005792215 | 0.050852454  | Ree spike | 0.808872842 | 0.028387322 |
| 471 | MP02628     | MP02628-044     | 0.403435542        | 0.014508188       | 0.71854604 | 0.008608968 | 0.124131817  | Ree spike | 0.364471373 | 0.013584918 |
| 472 | MP02628     | MP02628-045     | 0.32771948         | 0.023584679       | 0.72027214 | 0.006114195 | 0.014808098  | Ree spike | 0.296068036 | 0.021503486 |
| 473 | MP02628     | MP02628-046     | 0.391577986        | 0.022245992       | 0.71151645 | 0.007577547 | 0.075958074  | Zr spike  | 0.35375903  | 0.020394264 |
| 474 | MP02628     | MP02628-049     | 1.915331690693530  | 0.063125622       | 0.72491678 | 0.00610348  | -0.069336058 |           | 1.730347225 | 0.059496496 |
| 475 | MP02628     | MP02628-050     | 2.523364580465110  | 0.062080836       | 0.72509381 | 0.013005383 | 0.014513299  | Mg spike  | 2.279655748 | 0.060370574 |
| 476 | MP02628     | MP02628-052     | 4.399100641994370  | 0.110336998       | 0.74051098 | 0.007758717 | 0.319831677  |           | 3.974231526 | 0.107018869 |
| 478 | MP02628     | MP02628-058     | 0.154801062        | 0.006882362       | 0.71171468 | 0.005762882 | 0.14628781   | Ree spike | 0.139850235 | 0.006366909 |
| 479 | MP02628     | MP02628-059     | 1.947909726079450  | 0.036976752       | 0.72300151 | 0.005701982 | -0.116313173 | Ree spike | 1.759778844 | 0.037594294 |
| 482 | MP02628     | MP02628-060     | 4.353649935716370  | 0.142795033       | 0.72786846 | 0.011456959 | 0.234258152  | Zr spike  | 3.93317049  | 0.134638831 |
| 483 | MP03_493mic | MP03_493mic-001 | 0.314684758        | 0.02126716        | 0.71525477 | 0.023524856 | 0.11313429   |           | 0.284292219 | 0.019414098 |
| 484 | MP03_493mic | MP03_493mic-002 | 0.35691409         | 0.045060521       | 0.72303952 | 0.024323691 | 0.044676819  |           | 0.322443004 | 0.040830987 |
| 485 | MP03_493mic | MP03_493mic-003 | 0.246207604        | 0.019202639       | 0.70196334 | 0.021605815 | 0.255185258  |           | 0.222428651 | 0.017484435 |
| 490 | MP03_493mic | MP03_493mic-004 | 0.290805168        | 0.019086727       | 0.70724197 | 0.023922217 | 0.192283423  |           | 0.262718942 | 0.017434458 |
| 491 | MP03_493mic | MP03_493mic-005 | 0.300117178        | 0.018878723       | 0.71628979 | 0.020766109 | -0.008473129 |           | 0.271131589 | 0.017261123 |
| 492 | MP03_493mic | MP03_493mic-006 | 0.204359115        | 0.021372934       | 0.70399231 | 0.017836955 | 0.373723274  |           | 0.184621927 | 0.019393296 |
| 493 | MP03_493mic | MP03_493mic-007 | 0.261406198        | 0.016503904       | 0.71579638 | 0.02030222  | 0.101236614  |           | 0.236159351 | 0.015088485 |
| 494 | MP03_493mic | MP03_493mic-009 | 1.334317015615630  | 0.142651356       | 0.76262187 | 0.048971135 | 0.175600721  | P spike   | 1.205447472 | 0.129414243 |
| 495 | MP03_493mic | MP03_493mic-010 | 0.123506143        | 0.017872019       | 0.7118732  | 0.014215283 | 0.103902366  | Ree spike | 0.111577808 | 0.016182906 |
| 496 | MP03_493mic | MP03_493mic-011 | 1.653807750277510  | 0.11702247        | 0.68499401 | 0.040792238 | 0.501032362  |           | 1.494081503 | 0.106729405 |
| 497 | MP03_493mic | MP03_493mic-012 | 7.231550532804740  | 0.462205922       | 0.74499155 | 0.043429479 | 0.473332623  |           | 6.533120846 | 0.422445276 |
| 498 | MP03_493mic | MP03_493mic-013 | 12.772881755872000 | 1.125920888583980 | 0.84482682 | 0.083064588 | 0.360166536  | P spike   | 11.53926529 | 1.023444901 |
| 499 | MP03_493mic | MP03_493mic-014 | 3.364216081791110  | 0.146747776       | 0.70023825 | 0.030756489 | 0.21168101   |           | 3.039297052 | 0.135879244 |
| 500 | MP03_493mic | MP03_493mic-015 | 31.111524788954100 | 2.704419667310430 | 0.83205792 | 0.081464671 | 0.37669674   |           | 28.1067456  | 2.458701269 |
| 501 | MP03_493mic | MP03_493mic-016 | 10.453041244702100 | 0.998349953       | 0.70886815 | 0.066135933 | 0.510400293  | Zr spike  | 9.443477073 | 0.906663769 |

Matthew Robert Barnett Constraining the hidden Delamerian margin

| 502 | MP03_493mic | MP03_493mic-017 | 13.631393670471800 | 0.945769592       | 0.78111328        | 0.060536199 | 0.511718624  |           | 12.31486135 | 0.862907054 |
|-----|-------------|-----------------|--------------------|-------------------|-------------------|-------------|--------------|-----------|-------------|-------------|
| 503 | MP03_493mic | MP03_493mic-018 | 18.176660953502600 | 1.181671973857110 | 0.82252256        | 0.069827991 | 0.539052679  |           | 16.42114261 | 1.079605759 |
| 504 | MP03_493mic | MP03_493mic-019 | 12.162438421922300 | 1.443428353265670 | 0.79640126        | 0.096334334 | 0.461981874  | P spike   | 10.98777913 | 1.308458832 |
| 505 | MP03_493mic | MP03_493mic-020 | 8.301537474546450  | 0.513536048       | 0.74145452        | 0.040119531 | 0.36103235   |           | 7.499767481 | 0.469723699 |
| 506 | MP03_493mic | MP03_493mic-021 | 0.180193415        | 0.009273382       | 0.71674114        | 0.005189797 | 0.074936337  |           | 0.162790172 | 0.008528288 |
| 507 | MP03_493mic | MP03_493mic-022 | 0.282532535        | 0.065134961       | 0.7127554         | 0.01006187  | 0.296202475  |           | 0.255245287 | 0.058897307 |
| 508 | MP03_493mic | MP03_493mic-023 | 1.149075653695400  | 0.04515903        | 0.72366193        | 0.020566426 | 0.268835756  |           | 1.038096888 | 0.042046761 |
| 509 | MP03_493mic | MP03_493mic-024 | 0.120254573        | 0.009965822       | 0.71450836        | 0.005558233 | -0.212915758 |           | 0.108640278 | 0.009066043 |
| 510 | MP03_493mic | MP03_493mic-025 | 0.751504507        | 0.028851501       | 0.71407114        | 0.021223087 | 0.313992562  |           | 0.678923523 | 0.026900746 |
| 513 | MP03_493mic | MP03_493mic-026 | 3.183624741557170  | 0.503638062       | 0.73574052        | 0.027715146 | 0.335983363  |           | 2.876147386 | 0.455868406 |
| 514 | MP03_493mic | MP03_493mic-027 | 2.748242724873800  | 0.202659868       | 0.70707528        | 0.038649239 | 0.166949663  |           | 2.482814958 | 0.184696425 |
| 515 | MP03_493mic | MP03_493mic-028 | 2.284926327496200  | 0.111300431       | 0.72864157        | 0.029810433 | 0.300353371  | P spike   | 2.064246077 | 0.10256562  |
| 516 | MP03_493mic | MP03_493mic-029 | 9.643754006297370  | 0.73303811        | 0.75144844        | 0.03751181  | 0.455149149  |           | 8.712351527 | 0.667721641 |
| 517 | MP03_493mic | MP03_493mic-030 | 57.569965104203600 | 3.920727589330860 | 1.006702398022580 | 0.098365128 | 0.637382989  | P spike   | 52.00980584 | 3.578542558 |
| 518 | MP03_493mic | MP03_493mic-031 | 66.228211966520900 | 4.715867757658020 | 1.103208699769150 | 0.083755425 | 0.767481772  |           | 59.83183139 | 4.300562908 |
| 519 | MP03_493mic | MP03_493mic-032 | 0.808103729        | 0.0733181         | 0.71873874        | 0.011602682 | -0.07294888  |           | 0.73005634  | 0.066622229 |
| 520 | MP03_493mic | MP03_493mic-033 | 19.403989675334100 | 0.701689864       | 0.8207011         | 0.028987999 | 0.512625682  |           | 17.52993481 | 0.656784603 |
| 521 | MP03_493mic | MP03_493mic-034 | 12.041218504406400 | 0.579424436       | 0.79443825        | 0.013917326 | 0.319863047  |           | 10.87826674 | 0.5342079   |
| 522 | MP03_493mic | MP03_493mic-035 | 34.965260481436800 | 0.854327268       | 0.92471718        | 0.027325937 | 0.669475976  | Ree spike | 31.58828402 | 0.831579746 |
| 523 | MP03_493mic | MP03_493mic-036 | 3.952598082157540  | 0.140400108       | 0.71457824        | 0.030570044 | 0.254368576  | Ree spike | 3.570852587 | 0.131578729 |
| 524 | MP03_493mic | MP03_493mic-037 | 68.741713733903500 | 1.598667213466700 | 1.136098965156880 | 0.025486698 | 0.688587605  |           | 62.10257689 | 1.567254517 |
| 525 | MP03_493mic | MP03_493mic-038 | 9.293142192010520  | 0.880714028       | 0.74130465        | 0.024924907 | 0.108745441  | P spike   | 8.395602119 | 0.799896379 |
| 526 | MP03_493mic | MP03_493mic-039 | 57.963600769782000 | 2.826786254959850 | 1.085793880626550 | 0.033477329 | 0.711220177  |           | 52.36542381 | 2.604821697 |
| 527 | MP03_493mic | MP03_493mic-040 | 13.605177590757300 | 1.042568196903720 | 0.81209881        | 0.075194137 | 0.064317227  | Mg spike  | 12.29117724 | 0.949546592 |
| 528 | MP03_493mic | MP03_493mic-041 | 5.913113856709920  | 0.362817805       | 0.74246276        | 0.023796291 | 0.307488052  |           | 5.342019976 | 0.331930751 |
| 529 | MP03_493mic | MP03_493mic-042 | 7.786569620236700  | 0.140252271       | 0.76563258        | 0.015829469 | 0.309481398  | Zr spike  | 7.034535688 | 0.144245691 |
| 530 | MP03_493mic | MP03_493mic-043 | 4.568898879133490  | 0.338214599       | 0.7381496         | 0.024457027 | 0.347666565  |           | 4.127630496 | 0.308215337 |
| 535 | MP03_493mic | MP03_493mic-044 | 1.308261799483180  | 0.076939889       | 0.71915738        | 0.007286916 | 0.16857446   |           | 1.181908692 | 0.070467356 |
| 536 | MP03_493mic | MP03_493mic-045 | 0.544365332        | 0.020092243       | 0.70947317        | 0.010371382 | -0.144766421 |           | 0.491790036 | 0.018780617 |
| 537 | MP03_493mic | MP03_493mic-046 | 0.234873403        | 0.020325587       | 0.7137566         | 0.011961144 | 0.019126046  | P spike   | 0.212189117 | 0.018479885 |
| 538 | MP03_493mic | MP03_493mic-047 | 0.178330586        | 0.008386879       | 0.70231445        | 0.010227282 | 0.043151923  | P spike   | 0.161107257 | 0.007739609 |
| 539 | MP03_493mic | MP03_493mic-048 | 4.917145288433680  | 0.166189084       | 0.74601971        | 0.02108065  | 0.599425069  | Rb spike  | 4.442242952 | 0.156322249 |
| 540 | MP03_493mic | MP03_493mic-050 | 6.742808006365490  | 0.184251791       | 0.75543709        | 0.012291188 | 0.212409493  |           | 6.091581514 | 0.176837215 |

Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |             |                 |                     |                   |                   |             |              | -         | mstramms the n | idden Belamei |
|-----|-------------|-----------------|---------------------|-------------------|-------------------|-------------|--------------|-----------|----------------|---------------|
| 541 | MP03_493mic | MP03_493mic-051 | 0.176607868         | 0.005334788       | 0.71858656        | 0.008342616 | 0.184049446  |           | 0.159550921    | 0.00506683    |
| 544 | MP03_493mic | MP03_493mic-052 | 0.263655559         | 0.009813806       | 0.71577529        | 0.009800012 | 0.119907336  |           | 0.238191467    | 0.009168106   |
| 545 | MP03_493mic | MP03_493mic-053 | 0.14204194          | 0.004998316       | 0.71991442        | 0.008814077 | -0.047295403 | P drop    | 0.128323401    | 0.004687409   |
| 546 | MP03_493mic | MP03_493mic-054 | 1.390140059910350   | 0.127374358       | 0.71874971        | 0.014441269 | 0.256961915  | Rb drop   | 1.255879076    | 0.115728705   |
| 547 | MP03_493mic | MP03_493mic-055 | 0.151648137         | 0.005885536       | 0.70947307        | 0.009372486 | 0.047578324  |           | 0.137001822    | 0.00548399    |
| 548 | MP03_493mic | MP03_493mic-056 | 0.349971807         | 0.010334327       | 0.72070685        | 0.008589809 | 0.108460063  |           | 0.316171213    | 0.009836931   |
| 549 | MP03_493mic | MP03_493mic-057 | 0.321368733         | 0.026581083       | 0.71955298        | 0.011850523 | 0.033438589  | Ree spike | 0.29033065     | 0.024181818   |
| 550 | MP03_493mic | MP03_493mic-058 | 0.344220451         | 0.023459919       | 0.71494523        | 0.011933452 | -0.042966507 | P spike   | 0.310975329    | 0.021412114   |
| 551 | MP03_493mic | MP03_493mic-059 | 0.320699666         | 0.014924273       | 0.71226117        | 0.015201232 | 0.273922133  | Rb spike  | 0.289726203    | 0.013778577   |
| 552 | MP03_493mic | MP03_493mic-060 | 0.29974239          | 0.011685196       | 0.72305763        | 0.009968206 | 0.313590264  | P spike   | 0.270792999    | 0.010885061   |
| 553 | MP03_548mic | MP03_548mic-001 | 0.287760382         | 0.010056472       | 0.70978624        | 0.014645375 | 0.192813498  | P spike   | 0.259968224    | 0.009435645   |
| 554 | MP03_548mic | MP03_548mic-002 | 0.190267089         | 0.009429214       | 0.71714581        | 0.0080665   | 0.10916541   |           | 0.171890921    | 0.008683483   |
| 555 | MP03_548mic | MP03_548mic-003 | 3.683575576569360   | 0.092093719       | 0.73222916        | 0.005964715 | 0.008726961  | P spike   | 3.327812518    | 0.089362378   |
| 556 | MP03_548mic | MP03_548mic-004 | 0.707665232         | 0.039845352       | 0.69274951        | 0.014621909 | 0.16869841   | Mg spike  | 0.639318284    | 0.036538198   |
| 557 | MP03_548mic | MP03_548mic-005 | 2.516172091240620   | 0.094881037       | 0.7255331         | 0.005698094 | 0.191118542  |           | 2.273157916    | 0.08856466    |
| 558 | MP03_548mic | MP03_548mic-006 | 0.156448362         | 0.008531856       | 0.70938956        | 0.008712002 | 0.098179043  | Rb drop   | 0.141338438    | 0.007831301   |
| 559 | MP03_548mic | MP03_548mic-007 | 3.146478959983100   | 0.126660334       | 0.72808637        | 0.013572891 | 0.19281038   | P spike   | 2.842589178    | 0.117769327   |
| 560 | MP03_548mic | MP03_548mic-008 | 0.201058088         | 0.018242995       | 0.715297          | 0.011991388 | 0.09170748   | P spike   | 0.181639717    | 0.016576916   |
| 561 | MP03_548mic | MP03_548mic-009 | 0.136322243         | 0.004150851       | 0.71380179        | 0.007734361 | 0.197589944  |           | 0.123156117    | 0.003939389   |
| 562 | MP03_548mic | MP03_548mic-010 | 73.744297888817600  | 9.057540256548820 | 1.167667577092510 | 0.072485242 | 0.923378916  | Ree spike | 66.62200694    | 8.208759172   |
| 563 | MP03_548mic | MP03_548mic-011 | 3.230088074743360   | 0.470817338       | 0.70005024        | 0.044011278 | 0.49773663   | P spike   | 2.918123249    | 0.426305604   |
| 564 | MP03_548mic | MP03_548mic-012 | 177.185854675196000 | 5.957397156451810 | 1.824746935089180 | 0.054807015 | 0.839868466  |           | 160.0730847    | 5.605974482   |
| 565 | MP03_548mic | MP03_548mic-013 | 147.106171207396000 | 2.659408233570760 | 1.708298461188590 | 0.040236931 | 0.762919997  |           | 132.8985242    | 2.732849633   |
| 566 | MP03_548mic | MP03_548mic-014 | 146.221697196942000 | 3.451604534123110 | 1.645693220657020 | 0.04826595  | 0.58579113   | Ree spike | 132.0994735    | 3.376283646   |
| 567 | MP03_548mic | MP03_548mic-015 | 140.636780835856000 | 2.840706792032950 | 1.647597677338690 | 0.04135384  | 0.728684981  | Ree spike | 127.0539534    | 2.852439425   |
| 568 | MP03_548mic | MP03_548mic-016 | 196.796915963295000 | 3.985111491238960 | 2.003028909609350 | 0.049275699 | 0.788497251  |           | 177.7900919    | 3.999653281   |
| 569 | MP03_548mic | MP03_548mic-017 | 93.016323962222800  | 3.404598710173820 | 1.280090357314210 | 0.057313316 | 0.674644716  | Ree spike | 84.03272332    | 3.184112185   |
| 570 | MP03_548mic | MP03_548mic-018 | 61.394046682128600  | 1.881395348130620 | 1.079399991830630 | 0.041730542 | 0.452251346  | Ree spike | 55.46455416    | 1.784481716   |
| 571 | MP03_548mic | MP03_548mic-019 | 70.620783673871100  | 3.146796002886870 | 1.114835093782870 | 0.043066613 | 0.582449238  | Zr spike  | 63.80016455    | 2.910815755   |
| 572 | MP03_548mic | MP03_548mic-021 | 20.217117285394900  | 0.477540088       | 0.84930481        | 0.025769771 | 0.160612715  | Zr spike  | 18.26452982    | 0.467074744   |
| 575 | MP03_548mic | MP03_548mic-022 | 77.167447657201000  | 2.283222335136420 | 1.144356598423430 | 0.045621892 | 0.550390448  | Na spike  | 69.71454581    | 2.172901316   |
| 576 | MP03_548mic | MP03_548mic-023 | 86.969427283701900  | 3.109865582517020 | 1.180368230961400 | 0.057194845 | 0.730494663  | Ree spike | 78.56984138    | 2.91310874    |
| 581 | MP03_548mic | MP03_548mic-024 | 129.875442787789000 | 3.322705460549760 | 1.504990958492140 | 0.046950888 | 0.606198459  | Ree spike | 117.3319551    | 3.214478172   |

## Matthew Robert Barnett Constraining the hidden Delamerian margin

|     |             |                 |                     |                    |                   |             |              |           | U           |             |
|-----|-------------|-----------------|---------------------|--------------------|-------------------|-------------|--------------|-----------|-------------|-------------|
| 582 | MP03_548mic | MP03_548mic-025 | 438.934997286863000 | 37.898609858801200 | 3.466369876677160 | 0.26133405  | 0.974639933  |           | 396.5422585 | 34.45815128 |
| 583 | MP03_548mic | MP03_548mic-026 | 21.795298833958600  | 0.866707773        | 0.85079381        | 0.012811488 | 0.340950061  |           | 19.69028917 | 0.806426089 |
| 584 | MP03_548mic | MP03_548mic-027 | 19.744854425152800  | 0.446690592        | 0.82889071        | 0.014723796 | 0.365321382  |           | 17.83787854 | 0.439782909 |
| 585 | MP03_548mic | MP03_548mic-028 | 17.478599807871400  | 0.650934047        | 0.81066615        | 0.018579699 | 0.256162145  | Rb peak   | 15.79050084 | 0.608084919 |
| 586 | MP03_548mic | MP03_548mic-029 | 65.780589103869100  | 1.821433917210650  | 1.109824960503650 | 0.025754154 | 0.590345171  | P peak    | 59.42744035 | 1.745534086 |
| 587 | MP03_548mic | MP03_548mic-030 | 59.920209285142300  | 3.380758987594810  | 1.082748738825220 | 0.040144472 | 0.694723792  | P peak    | 54.13306131 | 3.099970226 |
| 588 | MP03_548mic | MP03_548mic-031 | 93.442050126822600  | 2.369237919343920  | 1.285454715859880 | 0.031470739 | 0.682696163  |           | 84.41733246 | 2.29472182  |
| 589 | MP03_548mic | MP03_548mic-032 | 6.888119007915510   | 0.735715247        | 0.75539369        | 0.00820836  | 0.722391125  |           | 6.222858248 | 0.667450906 |
| 590 | MP03_548mic | MP03_548mic-033 | 68.738980812331900  | 1.515785582001060  | 1.153552167854040 | 0.02234369  | 0.646355094  |           | 62.10010791 | 1.498525798 |
| 591 | MP03_548mic | MP03_548mic-034 | 33.479517339927400  | 2.937459440980180  | 0.9033972         | 0.039768685 | 0.739349837  | Ree spike | 30.24603529 | 2.670258592 |
| 592 | MP03_548mic | MP03_548mic-035 | 33.533420817379300  | 0.831218041        | 0.90219772        | 0.026146676 | 0.439772295  | Zr spike  | 30.29473272 | 0.807493882 |
| 593 | MP03_548mic | MP03_548mic-036 | 1.132864258928080   | 0.036406675        | 0.71751942        | 0.005556936 | -0.000191172 | P spike   | 1.023451205 | 0.034385697 |
| 594 | MP03_548mic | MP03_548mic-037 | 68.868198822787600  | 1.760590282806250  | 1.144812507298320 | 0.033194464 | 0.739294987  | Ree spike | 62.21684593 | 1.703407584 |
| 595 | MP03_548mic | MP03_548mic-038 | 17.379323269988400  | 0.250393824        | 0.81859138        | 0.009427975 | 0.296206473  |           | 15.70081252 | 0.273578751 |
| 596 | MP03_548mic | MP03_548mic-039 | 18.611531743367900  | 0.60411346         | 0.84309189        | 0.016157354 | 0.523529401  | Ree spike | 16.81401318 | 0.570098644 |
| 597 | MP03_548mic | MP03_548mic-040 | 52.110442258994400  | 1.693744706561510  | 1.043473959848040 | 0.025918109 | 0.611168264  | P spike   | 47.07756864 | 1.598197655 |
| 598 | MP03_548mic | MP03_548mic-041 | 86.678886851769800  | 4.418989026747900  | 1.268432666051020 | 0.059558042 | 0.691966713  |           | 78.30736161 | 4.065285243 |
| 599 | MP03_548mic | MP03_548mic-042 | 114.829778501455000 | 4.061801403252990  | 1.460140582523910 | 0.051983974 | 0.733013828  |           | 103.7394147 | 3.807730512 |
| 600 | MP03_548mic | MP03_548mic-043 | 136.035004803786000 | 4.577917760101210  | 1.648091732426430 | 0.048484668 | 0.814168172  |           | 122.8966211 | 4.307567115 |
| 601 | MP03_548mic | MP03_548mic-044 | 104.069495876328000 | 2.967921719851210  | 1.429115279899080 | 0.040867716 | 0.679100239  |           | 94.0183699  | 2.835162086 |
| 602 | MP03_548mic | MP03_548mic-045 | 66.458034739422500  | 2.911335151392050  | 1.131510426591810 | 0.026784929 | 0.803098764  |           | 60.03945767 | 2.695162371 |
| 603 | MP03_548mic | MP03_548mic-046 | 103.804269954978000 | 3.668718935043670  | 1.417251351313900 | 0.044780862 | 0.711008738  | Ree drops | 93.77875973 | 3.439442029 |
| 604 | MP03_548mic | MP03_548mic-047 | 144.982334421800000 | 3.621179498408740  | 1.654802947804480 | 0.046395887 | 0.709576414  | Ree spike | 130.9798095 | 3.514240441 |
| 607 | MP03_548mic | MP03_548mic-048 | 205.314002408856000 | 8.256988978149910  | 2.102789722656110 | 0.077007691 | 0.838643596  | Na spike  | 185.4845905 | 7.67779267  |
| 608 | MP03_548mic | MP03_548mic-049 | 162.756156405256000 | 3.227446697066380  | 1.793531622244890 | 0.036025574 | 0.683073754  |           | 147.0370197 | 3.252351083 |
| 609 | MP03_548mic | MP03_548mic-050 | 157.782076708090000 | 3.970684404293040  | 1.771188304274500 | 0.042474745 | 0.637643249  | P spike   | 142.5433411 | 3.849577146 |
| 610 | MP03_548mic | MP03_548mic-051 | 12.899865352115000  | 0.392642318        | 0.80203595        | 0.020124237 | 0.37898057   | P spike   | 11.6539847  | 0.372652261 |
| 611 | MP03_548mic | MP03_548mic-052 | 9.947848185176520   | 0.327355152        | 0.77713284        | 0.005895596 | 0.423901143  |           | 8.987076016 | 0.308574146 |
| 612 | MP03_548mic | MP03_548mic-053 | 44.608654509456200  | 1.129242487052000  | 0.99436828        | 0.020775843 | 0.600505755  | Ree drops | 40.30031033 | 1.093954991 |
| 613 | MP03_548mic | MP03_548mic-054 | 242.855881787532000 | 5.782424153415060  | 2.325081965567430 | 0.058523273 | 0.796302013  |           | 219.4006412 | 5.649113253 |
| 614 | MP03_548mic | MP03_548mic-055 | 177.898556604853000 | 5.888111209865350  | 1.845630911694000 | 0.068469322 | 0.737025121  | Ree spike | 160.7169532 | 5.547696447 |
| 615 | MP03_548mic | MP03_548mic-056 | 266.122533902005000 | 19.745398711972700 | 2.301464584544030 | 0.158742545 | 0.94333284   | Ree spike | 240.420179  | 17.99328916 |
| 616 | MP03_548mic | MP03_548mic-057 | 214.482965087693000 | 6.690025573459470  | 2.051357860176700 | 0.06023568  | 0.797740996  |           | 193.7680064 | 6.335173462 |

## Matthew Robert Barnett Constraining the hidden Delamerian margin

| 617 | MP03_548mic | MP03_548mic-058 | 149.266463286876000 | 6.250157537904780 | 1.682680940062380 | 0.054823862 | 0.796953614 | Ree spike | 134.8501733 | 5.799090359 |
|-----|-------------|-----------------|---------------------|-------------------|-------------------|-------------|-------------|-----------|-------------|-------------|
| 618 | MP03_548mic | MP03_548mic-059 | 145.745594752145000 | 2.947627496212430 | 1.643535396486430 | 0.034419368 | 0.656102997 |           | 131.6693535 | 2.959088787 |
| 619 | MP03 548mic | MP03 548mic-060 | 179.383371540893000 | 6.791836800295290 | 1.857279987814690 | 0.0729959   | 0.695573345 | Zr spike  | 162.0583634 | 6.338069215 |

## APPENDIX 16: SOLUTION ICP-MS METHOD

Samples were pulverised using a tungsten carbide ring mill. Sample contamination was prevented with a quartz wash between each sample crush. Samples were prepared first by dissolving all mineral phases in bombs with 28 molar hydrofluoric acid and a dilution using 7 molar nitric acid. The solution was then placed in 15 ml Teflon vials, using 7 molar nitric acid, 6 molar hydrochloric acid and 28 molar hydrofluoric acid. Each sample was then diluted using 2% HNO3 into two vials for analysis. A 1:1000 dilution was used for analysis of REE and a 1:100000 for major elements. These were analysed at Adelaide Microscopy using the solution ICP-MS Agilent 8900x QQQ-ICP-MS. Standards were prepped alongside international standard USGS G-2 (granite powder) (Flanagan, 1976). Adelaide Microscopy prepared BHVO-1 (basalt powder) standard (Flanagan, 1976) was also included in the run. Due to the use of HF in the dissolution phase of samples, silica concentrations were not able to be obtained for analysis.

## APPENDIX 17: METHOD FOR WHOLE-ROCK DIGESTION USED IN TIMS PREPARATION

Using hydrochloric acid, nitric acid and hydrofluoric acid. Samples were spiked with .4gm  $^{150}$ Nd/ $^{147}$ Sm solution and dissolution was carried out in high-pressure Teflon vessels, in a hydrofluoric (4mL of 28M) and nitric (2mL of 15M) mixture, over a several day period at 190°C. This ensured all mineral phases were in solution. Samples were evaporated until dry, 6mL of 6M HCL were added and these were placed back into the 'bombs' overnight.

Samples were dried down at  $140^{\circ}$ C. 1.5mL of 2M HCL were added and sample and then centrifuged. Using column chromatography following Foden et al. (1995), isotope ratios were measured using the Isotopx Phoenix Thermal Ionisation Mass Spectrometer. The international Nd standard JNdi-1 yielded  $^{143}$ Nd/ $^{144}$ Nd values of  $0.512107 \pm 0.000003$  (2 s.d.) within uncertainty of published values ( $0.512115 \pm 0.000007$ ) (Tanaka et al., 2000). Blanks showed negligible Nd and Sm.