NEW APPROACHES FOR RAPID ANALYSIS AND TRACING OF FLUIDS AND THEIR LIGANDS IN REGIONAL MINERAL SYSTEMS

MINEX CRC PROGRAM 3 National Drilling Initiative

PHD PROJECT

University of South Australia

PRIMARY SUPERVISOR

Assoc. Prof. Justin Payne e: Justin.Payne@unisa.edu.au t: +61 8 8302 1220

CO-SUPERVISORS

Assoc. Prof. Carl Spandler (University of Adelaide), Prof. Tom Raimondo, Dr. Laura Morrissey (UniSA) and Dr. Laura Wade (Geological Survey of South Australia)

PARTICIPATING ORGANISATIONS

RESEARCH PROJECT

The tracing of mineral systems in the ancient rock record is often reliant on collecting datasets using the mineralogy or trace element characteristics of rocks and minerals surrounding a mineral deposit. This approach may work in the immediate vicinity of a deposit in high fluid flow regimes, but in distal settings or fluid-poor systems, the analysed volume is likely to be rock-buffered. This can either completely hide the signature of the mineral system or potentially even produce false positives. Direct analysis of fluids preserved within the rocks has a much greater potential to identify the distal components of a mineral system as it provides the potential to limit the influence of rock-buffering on ligand and isotope systematics. Traditional methods of fluid inclusion analysis (i.e. the captured fluids) are reliant on time consuming methods such as microthermometry and/ or hard-to-access methods such as PIXE.

Recent advances in mass spectrometry mean that laser ablation inductively coupled plasma time-of-flight mass spectrometry has the potential to revolutionise the volume of data that can be collected on fluid inclusions and mineral trace element chemistry in regional-scale surveys. These methods will be developed using new equipment at UniSA and applied to target NDI regions with an initial focus on the Curnamona Province.